Skip to main content

Fundamental study on chaotic transition of two-phase flow regime and free surface instability in gas deaeration process

Abstract

Deaeration is a process of eliminating aspirated air from liquid in hydraulic reservoirs to avoid cavitation in the downstream pump blades. The complex fluid dynamics associated with deaeration is investigated. The three-dimensional buoyancy driven chaotic behavior of gas-liquid interfacial two-phase flow is studied. Parametric study is executed to understand change in internal flow physics (bubble coalescence, disintegration, horizontal spread, bubble velocity etc.), strength of accelerating Rayleigh-Taylor instability, turbulent kinetic energy, amplitude of upward velocity near free surface, and rise in free surface level with the variation of parameters like incoming mixture flow rate, incoming volume fraction of air, liquid fill depth, and Atwood number. The computations show increment in cavitation, wavenumber and amplitude of upward velocity towards oscillating free surface with incoming flow rate (Re). Cavitation and free surface instability show incremental trend with volume fraction of incoming air forming a kink (cavitation reduces) due to bubble coalescence in a threshold range of volume fraction of incoming air. With the variation of Atwood number, initially cavitation reduces. But after a critical value (A*) of Atwood number, effect of bubble disintegration, and rise of cavitation become prominent, which is formulated with respect to incoming flow rate (Re). With liquid fill depth, cavitation shows a slight decrement with almost equal deaeration and constant wavelength of free surface oscillation at an increasing buoyancy driven upward velocity. Some glimpse of design solution to reduce the cavitation and enhance the deaeration is also studied and formulated to get better understanding.

This is a preview of subscription content, access via your institution.

References

  1. Balasubramaniam, R., Ramé, E., Kizito, J., Kassemi, M. 2014. Two phase flow modeling: Summary of flow regimes and pressure drop correlations in reduced and partial gravity. National Center for Space Exploration Research, Cleveland, Ohio, USA.

    Google Scholar 

  2. Bellman, R., Pennington, R. H. 1954. Effects of surface tension and viscosity on Taylor instability. Q Appl Math, 12: 151–162.

    MathSciNet  MATH  Google Scholar 

  3. CD-adapco Group (CDA). 2018. STAR-CCM+ Users Guide, Release 13.06.013. Melville, New York, USA.

  4. Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press.

  5. Chou, Y., Shao, Y. 2016. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment. Phys Fluids, 28: 043302.

    Google Scholar 

  6. Contopoulos, I., Kazanas, D., Papadopoulos, D. B. 2016. The magnetic Rayleigh-Taylor instability in astrophysical discs. Mon Not R Astron Soc, 462: 565–575.

    Google Scholar 

  7. Duff, R. E., Harlow, F. H., Hirt, C. W. 1962. Effects of diffusion on interface instability between gases. Phys Fluids, 5: 417–425.

    MATH  Google Scholar 

  8. Gorash, Y., Bickley, A., Gozalo, F. 2018. Application of the CEL approach to consider FSI for the assessment of leak tightness for elastomeric seals. In: Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction, PVP2018-84792.

  9. Guo, H. Y., Wang, L. F., Ye, W. H., Wu, J. F., Zhang, W. Y. 2017. Weakly nonlinear Rayleigh-Taylor instability in incompressible fluids with surface tension. Chinese Phys Lett, 34: 045201.

    Google Scholar 

  10. Hibiki, T., Ishii, M. 2001. Interfacial area concentration in steady fully-developed bubbly flow. Int J Heat Mass Tran, 44: 3443–3461.

    MATH  Google Scholar 

  11. Hibiki, T., Ishii, M. 2002. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967–3977.

    Article  Google Scholar 

  12. Hu, Z. X., Zhang, Y. S., Tian, B., He, Z., Li, L. 2019. Effect of viscosity on two-dimensional single-mode Rayleigh-Taylor instability during and after the reacceleration stage. Phys Fluids, 31: 104108.

    Article  Google Scholar 

  13. Ingvast, H., Norberg, A. 2012. Unit for accumulating and degassing oil. United States Patent, US 8,118,921 B2.

  14. Joggerst, C. C., Almgren, A., Woosley, S. E. 2010. Three-dimensional simulations of Rayleigh-Taylor mixing in core-collapse supernovae. Astrophys J Lett, 723: 353–363.

    Article  Google Scholar 

  15. Kawaguchi, M., Niga, S., Gou, N., Miyake, K. 2006. Buoyancy-driven path instabilities of bubble rising in simple and polymer solutions of hele-shaw cell. J Phys Soc Jpn, 75: 124401.

    Article  Google Scholar 

  16. Kirkpatrick, R. D., Lockett, M. J. 1974. The influence of approach velocity on bubble coalescence. Chem Eng Sci, 29: 2363–2373.

    Article  Google Scholar 

  17. Kocamustafaogullari, G., Ishii, M. 1995. Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Tran, 38: 481–493.

    Article  Google Scholar 

  18. Le Creurer, B., Gauthier, S. 2008. A return toward equilibrium in a 2D Rayleigh-Taylor instability for compressible fluids with a multidomain adaptive Chebyshev method. Theor Comp Fluid Dyn, 22: 125–144.

    Article  Google Scholar 

  19. Lewis, D. J. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. P Roy Soc A: Math Phy, 202: 81–96.

    Google Scholar 

  20. Li, S. M., Zhang, A. M., Wang, Q. X., Zhang, S. 2019. The jet characteristics of bubbles near mixed boundaries. Phys Fluids, 31: 107105.

    Google Scholar 

  21. Loisy, A., Naso, A., Spelt, P. D. M. 2017. Buoyancy-driven bubbly flows: Ordered and free rise at small and intermediate volume fraction. J Fluid Mech, 816: 94–141.

    MathSciNet  MATH  Google Scholar 

  22. Magolan, B., Baglietto, E. 2019. Assembling a bubble-induced turbulence model incorporating physcial understanding from DNS. Int J Multiphase Flow, 116: 185–202.

    MathSciNet  Google Scholar 

  23. Magolan, B., Lubchenko, N., Baglietto, E. 2019. A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chem Eng Sci: X, 2: 100009.

    Google Scholar 

  24. Morgan, R. V., Likhachev, O. A., Jacobs, J. W. 2016. Rarefaction-driven Rayleigh-Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J Fluid Mech, 791: 34–60.

    MathSciNet  MATH  Google Scholar 

  25. Oakley, J. 2004. Rayleigh-Taylor instability notes. Available at http://silver.neep.wisc.edu/~shock/rtnotes.pdf.

  26. Oolman, T. O., Blanch, H. W. 1986. Bubble coalescence in stagnant liquids. Chem Eng Commun, 43: 237–261.

    Google Scholar 

  27. Plesset, M. S. 1974. Viscous effects in Rayleigh-Taylor instability. Phys Fluids, 17: 1.

    MATH  Google Scholar 

  28. Plesset, M. S., Hsieh, D. Y. 1964. General analysis of the stability of superposed fluids. Phys Fluids, 7: 1099–1108.

    MathSciNet  MATH  Google Scholar 

  29. Prince, M. J., Blanch, H. W. 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 36: 1485–1499.

    Google Scholar 

  30. Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P. H., Jayaraj, J. 2012. The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys Fluids, 24: 074107.

    Google Scholar 

  31. Rayleigh, L. 1883. Analytic solutions of the Rayleigh equation for linear density profiles. Proc London Math Soc, 14: 170–177.

    MathSciNet  MATH  Google Scholar 

  32. Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Ralph, J., Scott, H., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C. et al. 2012. Hot-spot mix in ignition-scale implosions on the NIF. Phys Plasmas, 19: 056307.

    Google Scholar 

  33. Roache, P. J. 1997. Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech, 29: 123–160.

    MathSciNet  Article  Google Scholar 

  34. Sanderson, R. M., Davison, J. L. 2004. Hydraulic pump reservoir having deaeration diffuser. United States Patent, US 6,783,334 B2.

  35. Shelke, N., Bade, A., Mukhopadhyay, S. 2019. Fluid-structure interaction-based simulation methods for fluid sloshing in tanks. SAE Technical Paper, 2019-01-5091.

  36. Smalyuk, V. A. 2012. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion. Physica Scripta, 86: 058204.

    Article  Google Scholar 

  37. Taylor, G. I. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. P Roy Soc A: Math Phy, 201: 192–196.

    MathSciNet  MATH  Google Scholar 

  38. Tejashwar Reddy, V. 2017. CFD analysis of sloshing within a tank with porous baffles. Int J Sci Res, 6: 172–177.

    Google Scholar 

  39. Terrones, G., Carrara, M. D. 2015. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface. Phys Fluids, 27: 054105.

    Article  Google Scholar 

  40. Tic, V., Lovrec, D. 2012. Design of modern hydraulic tank using fluid flow simulation. Int J Simul Model, 11: 77–88.

    Google Scholar 

  41. Vijay Kumar, K., Kantha Rao, K. 2017. Exploration of air flow inside oil tanks by using CFD. Int J Adv Infor Sci Tech, 6: 70–77.

    Google Scholar 

  42. Wei, T., Livescu, D. 2012. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Phys Rev E, 86: 046405.

    Google Scholar 

  43. Wolf, G. G. H. 2018. Dynamic stabilization of the Rayleigh-Taylor instability of miscible liquids and the related “frozen waves”. Phys Fluids, 30: 021701.

    Google Scholar 

  44. Yamanaka, C. 1999. Inertial confinement fusion: The quest for ignition and energy gain using indirect drive. Nucl Fusion, 39: 825–827.

    Google Scholar 

  45. Zahedi, P., Saleh, R., Moreno-Atanasio, R., Yousefi, K. 2014. Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method. Korean J Chem Eng, 31: 1349–1361.

    Google Scholar 

  46. Zhou, Y., Cabot, W. H. 2019. Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios. Physics Fluids, 31: 084106.

    Google Scholar 

  47. Ziegenhein, T. 2016. Fluid dynamics of bubbly flows. Ph.D. Thesis. Process Sciences of the Technical University, Berlin.

Download references

Acknowledgements

The authors would like to acknowledge John Deere India Private Limited for constant support of providing the computational resources to execute this study and Mrs. Shatarupa Roy, Mr. Shyam Chaturvedi, and Mr. Svidal Trond A for constantly encouragement and motivation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sourabh Mukhopadhyay.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Nimbalkar, G. Fundamental study on chaotic transition of two-phase flow regime and free surface instability in gas deaeration process. Exp. Comput. Multiph. Flow 3, 258–288 (2021). https://doi.org/10.1007/s42757-020-0065-3

Download citation

Keywords

  • deaeration
  • instability
  • kink formation
  • critical Atwood number