A review on bubble generation and transportation in Venturi-type bubble generators

Abstract

Venturi-type bubble generators own advantages of simplicity in structure, high efficiency, low power consumption, and high reliability, exhibiting a broad application potential in various fields. This work presents a literature review of recent progress in the research concerning Venturi-type bubble generators, with a focus on the performance evaluation, bubble transportation, and breakup mechanisms. Experimental studies employing flow visualization techniques have played an important role in exploring the bubble transportation and breakup phenomena, which is vitally necessary for clarifying the bubble breakup mechanisms and understanding the working principle and performance of a Venturi channel as a bubble generator. A summarization was carried out on both experimental and theoretical work concerning parameters influencing the bubble breakup and the performance of Venturi-type bubble generators. Based on the geometric parameter optimization combined with appropriate flow conditions, it is expected that Venturi-type bubble generators can produce bubbles with controllable size and concentration to satisfy the application requirements, while a further work is required to illustrate the interaction between the liquid and gas bubbles.

References

  1. Agarwal, A., Ng, W. J., Liu, Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84: 1175–1180.

    Google Scholar 

  2. Ahmadi, R., Khodadadi, D. A., Abdollahy, M., Fan, M. M. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int J Min Sci Technol, 24: 559–566.

    Google Scholar 

  3. Ahmadpour, A., Noori Rahim Abadi, S. M. A., Kouhikamali, R. 2016. Numerical simulation of two-phase gas-liquid flow through gradual expansions/contractions. Int J Multiphase Flow, 79: 31–49.

    MathSciNet  Google Scholar 

  4. Akhtar, M. S., Rajesh, M., Ciji, A., Sharma, P., Kamalam, B. S., Patiyal, R. S., Singh, A. K., Sarma, D. 2018. Photo-thermal manipulations induce captive maturation and spawning in endangered golden mahseer (Tor putitora): A silver-lining in the strangled conservation efforts of decades. Aquaculture, 497: 336–347.

    Google Scholar 

  5. Ali, M., Yan, C. Q., Sun, Z. N., Gu, H. F., Mehboob, K. 2013. Dust particle removal efficiency of a Venturi scrubber. Ann Nucl Energy, 54: 178–183.

    Google Scholar 

  6. Baawain, M. S., Gamal El-Din, M., Clarke, K., Smith, D. W. 2007. Impinging-jet ozone bubble column modeling: Hydrodynamics, gas hold-up, bubble characteristics, and ozone mass transfer. Ozone: Science & Engineering, 29: 245–259.

    Google Scholar 

  7. Bagatur, T. 2014. Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arab J Sci Eng, 39: 2525–2533.

    Google Scholar 

  8. Bal, M., Reddy, T. T., Meikap, B. C. 2019. Removal of HCl gas from off gases using self-priming Venturi scrubber. J Hazard Mater, 364: 406–418.

    Google Scholar 

  9. Balamurugan, S., Lad, M. D., Gaikar, V. G., Patwardhan, A. W. 2007. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 131: 83–103.

    Google Scholar 

  10. Basso, A., Hamad, F. A., Ganesan, P. 2018. Effects of the geometrical configuration of air-water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pac J Chem Eng, 13: e2259.

    Google Scholar 

  11. Bauer, W. G., Fredrickson, A. G., Tsuchiya, H. M. 1963. Mass transfer characteristics of Venturi liquid-gas contactor. Ind Eng Chem Process Des Dev, 2: 178–187.

    Google Scholar 

  12. Briens, C. L., Huynh, L. X., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1992. Hydrodynamics and gas-liquid mass transfer in a downward Venturi-bubble column combination. Chem Eng Sci, 47: 3549–3556.

    Google Scholar 

  13. Cramers, P. H. M. R., Beenackers, A. A. C. M. 2001. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 82: 131–141.

    Google Scholar 

  14. Dahrazma, B., Naghedinia, A., Gorji, H. G., Saghravani, S. F. 2019. Morphological and physiological responses of Cucumis sativus L. to water with micro-nanobubbles. J Agr Sci Tech, 21: 181–192.

    Google Scholar 

  15. Fujikawa, S., Zhang, R. S., Hayama, S., Peng, G. Y. 2003. The control of micro-air-bubble generation by a rotational porous plate. Int J Multiphase Flow, 29: 1221–1236.

    MATH  Google Scholar 

  16. Fujiwara, A., Okamoto, K., Hashiguchi, K., Peixinho, J., Takagi, S., Matsumoto, Y. 2007. Bubble breakup phenomena in a Venturi tube. In: Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference: FEDSM2007-37243.

    Google Scholar 

  17. Fujiwara, A., Takagi, S., Watanabe, K., Matsumoto, Y. 2003. Experimental study on the new micro-bubble generator and its application to water purification system. In: Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu: FEDSM2003-45162.

    Google Scholar 

  18. Gabbard, C. H. 1972. Development of a Venturi type bubble generator for use in the molten-salt reactor xenon removal system. Office of Scientific and Technical Information: ORNL-TM-4122.

    Google Scholar 

  19. Gordiychuk, A., Svanera, M., Benini, S., Poesio, P. 2016. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp Therm Fluid Sci, 70: 51–60.

    Google Scholar 

  20. Gourich, B., El Azher, N., Vial, C., Soulami, M. B., Ziyad, M., Zoulalian, A. 2007. Influence of operating conditions and design parameters on hydrodynamics and mass transfer in an emulsion loop-venturi reactor. Chem Eng Process, 46: 139–149.

    Google Scholar 

  21. Gourich, B., Soulami, M. B., Zoulalian, A., Ziyad, M. 2005. Simultaneous measurement of gas hold-up and mass transfer coefficient by tracer dynamic technique in “Emulsair” reactor with an emulsion-venturi distributor. Chem Eng sci, 60: 6414–6421.

    Google Scholar 

  22. Gulhane, N. P., Landge, A. D., Shukla, D. S., Kale, S. S. 2015. Experimental study of iodine removal efficiency in self-priming Venturi scrubber. Ann Nucl Energy, 78: 152–159.

    Google Scholar 

  23. Hashim, A., Yaakob, O. B., Koh, K. K., Ismail, N., Ahmed, Y. M. 2015. Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015. J Teknologi, 74: 105–114.

    Google Scholar 

  24. Havelka, P., Linek, V., Sinkule, J., Zahradnik, J., Fialova, M. 2000. Hydrodynamic and mass transfer characteristics of ejector loop reactors. Chem Eng Sci, 55: 535–549.

    Google Scholar 

  25. Huang, J., Sun, L. C., Du, M., Liang, Z., Mo, Z. Y., Tang, J. G., Xie, G. 2019a. An investigation on the performance of a micro-scale Venturi bubble generator. Chem Eng J, https://doi.org/10.1016/j.cej.2019.02.068

    Google Scholar 

  26. Huang, J., Sun, L. C., Du, M., Mo, Z. Y., Zhao, L. 2018. A visualized study of interfacial behavior of air-water two-phase flow in a rectangular Venturi channel. Theor Appl Mech Lett, 8: 334–344.

    Google Scholar 

  27. Huang, J., Sun, L. C., Mo, Z. Y., Liu, H. T., Du, M., Tang, J. G., Bao, J. J. 2019b. A visualized study of bubble breakup in small rectangular Venturi channels. Exp Comput Multiph Flow, 1: 177–185.

    Google Scholar 

  28. Huynh, L. X., Briens, C. L., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1991. Hydrodynamics and mass transfer in an upward Venturi/bubble column combination. Can J Chem Eng, 69: 711–722.

    Google Scholar 

  29. Ishii, R., Umeda, Y., Murata, S., Shishido, N. 1993. Bubbly flows through a converging-diverging nozzle. Phys Fluid Fluid Dynam, 5: 1630–1643.

    MATH  Google Scholar 

  30. Jackson, M. L. 1964. Aeration in Bernoulli types of devices. AIChE J, 10: 836–842.

    Google Scholar 

  31. Kandakure, M. T., Gaikar, V. G., Patwardhan, A. W. 2005. Hydrodynamic aspects of ejectors. Chem Eng Sci, 60: 6391–6402.

    Google Scholar 

  32. Kaneko, A., Gong, X., Takagi, S., Matsumoto, Y. 2012. Development of microbubble generator and its utilization to enhance the mass transfer in the bubble plumes and columns. In: Proceedings of the ASME 2012 Fluids Engineering Summer Meeting: FEDSM2012-72097.

    Google Scholar 

  33. Kawamura, T., Fujiwara, A., Takahashi, T., Kato, H., Matsumoto, Y., Kodama, Y. 2004. The effects of the bubble size on the bubble dispersion and skin friction reduction. In: Proceedings of the 5th Symposium on Smart Control of Turbulence: 145–151.

    Google Scholar 

  34. Kaya, Y., Bacaksiz, A. M., Bayrak, H., Gönder, Z. B., Vergili, I., Hasar, H., Yilmaz, G. 2017. Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem Eng J, 322: 293–301.

    Google Scholar 

  35. Kayaalp, N., Ozturkmen, G. 2016. A Venturi device reduces membrane fouling in a submerged membrane bioreactor. Water Sci Technol, 74: 147–156.

    Google Scholar 

  36. Kowe, R., Hunt, J. C. R., Hunt, A., Couet, B., Bradbury, L. J. S. 1988. The effects of bubbles on the volume fluxes and the pressure gradients in unsteady and non-uniform flow of liquids. Int J Multiphase Flow, 14: 587–606.

    Google Scholar 

  37. Kress, T. S. 1972. Mass transfer between small bubbles and liquids in cocurrent turbulent pipeline flow. Office of Scientific and Technical Information: ORNL-TM-3718.

    Google Scholar 

  38. Krusong, W., Yaiyen, S., Pornpukdeewatana, S. 2015. Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. J Appl Microbiol, 118: 629–640.

    Google Scholar 

  39. Kuo, J. T. 1978. Flow of bubbles through nozzles. Ph.D. Thesis. Dartmouth College, New Hampshire.

    Google Scholar 

  40. Kuo, J. T., Wallis, G. B. 1988. Flow of bubbles through nozzles. Int J Multiphase Flow, 14: 547–564.

    Google Scholar 

  41. Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., Ahn, H. S. 2019. Experimental investigation of microbubble generation in the Venturi nozzle. Int J Heat Mass Tran, 136: 1127–1138.

    Google Scholar 

  42. Li, J. J., Song Y. C., Yin, J. L., Wang, D. Z. 2017. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator. Nucl Eng Des, 325: 90–96.

    Google Scholar 

  43. Li, X. L., Ma, X. W., Zhang, L., Zhang, H. C. 2016. Dynamic characteristics of ventilated bubble moving in micro scale venturi. Chem Eng Process, 100: 79–86.

    Google Scholar 

  44. Liao, Y. X., Lucas, D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci, 64: 3389–3406.

    Google Scholar 

  45. Magnaudet, J., Rivero, M., Fabre, J. 1995. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J Fluid Mech, 284: 97–135.

    MathSciNet  MATH  Google Scholar 

  46. Majid, A. I., Nugroho, F. M., Juwana, W. E., Budhijanto, W., Deendarlianto, Indarto. 2018. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12°. AIP Conference Proceedings, 2001: 050009.

    Google Scholar 

  47. Mansour, M., Kováts, P., Wunderlich, B., Thévenin, D. 2018. Experimental investigations of a two-phase gas/liquid flow in a diverging horizontal channel. Exp Therm Fluid Sci, 93: 210–217.

    Google Scholar 

  48. Mills, C. S. L., Schlegel, J. P. 2019a. Interfacial area measurement with new algorithm for grouping bubbles by diameter. Exp Comput Multiph Flow, 1: 61–72.

    Google Scholar 

  49. Mills, C., Schlegel, J. P. 2019b. Comparison of data processing algorithm performance for optical and conductivity void probes. Exp Comput Multiph Flow, https://doi.org/10.1007/s42757-019-0017-y.

    Google Scholar 

  50. Mitra, S., Daltrophe, N. C., Gilron, J. 2016. A novel eductor-based MBR for the treatment of domestic wastewater. Water Res, 100: 65–79.

    Google Scholar 

  51. Nakatake, Y., Kisu, S., Shigyo, K., Eguchi, T., Watanabe, T. 2013. Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy, 59: 233–239.

    Google Scholar 

  52. Nomura, Y., Uesawa, S., Kaneko, A., Abe, Y. 2011. Study on bubble breakup mechanism in a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10024.

    Google Scholar 

  53. Onari, H., Saga, T., Watanabe, K., Maeda, K., Matsuo, K. 1999. High functional characteristics of micro-bubbles and water purification. Resour Process, 46: 238–244. (in Japanese).

    Google Scholar 

  54. Poh, P. E., Ong, W. Y. J., Lau, E. V., Chong, M. N. 2014. Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). J Environ Chem Eng, 2: 1174–1181.

    Google Scholar 

  55. Reay, D., Ratcliff, G. A. 1973. Removal of fine particles from water by dispersed air flotation: Effects of bubble size and particle size on collection efficiency. Can J Chem Eng, 51: 178–185.

    Google Scholar 

  56. Reichmann, F., Koch, M. J., Kockmann, N. 2017b. Investigation of bubble breakup in laminar, transient, and turbulent regime behind micronozzles. In: Proceedings of the ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels: ICNMM2017-5540. aiReichmann, F., Tollkötter, A., Körner, S., Kockmann, N. 2017c. Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area. Chem Eng Sci, 169: 151–163.

    Google Scholar 

  57. Reichmann, F., Varel, F., Kockmann, N. 2017a. Energy optimization of gas-liquid dispersion in micronozzles assisted by design of experiment. Processes, 5: 57.

    Google Scholar 

  58. Reis, A. S., Barrozo, M. A. S. 2016. A study on bubble formation and its relation with the performance of apatite flotation. Sep Purif Technol, 161: 112–120.

    Google Scholar 

  59. Rodrigues, R. T., Rubio, J. 2003. New basis for measuring the size distribution of bubbles. Miner Eng, 16: 757–765.

    Google Scholar 

  60. Rodrigues, R. T., Rubio, J. 2007. DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry. Int J Miner Process, 82: 1–13.

    Google Scholar 

  61. Sadatomi, M., Kawahara, A., Kano, K., Ohtomo, A. 2005. Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Exp Therm Fluid Sci, 29: 615–623.

    Google Scholar 

  62. Sadatomi, M., Kawahara, A., Matsuura, H., Shikatani, S. 2012. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Exp Therm Fluid Sci, 41: 23–30.

    Google Scholar 

  63. Sandhu, N., Jameson, G. J. 1979. An experimental study of choked foam flows in a convergent-divergent nozzle. Int J Multiphase Flow, 5: 39–58.

    Google Scholar 

  64. Sharma, D., Patwardhan, A., Ranade, V. 2018. Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy, 164: 10–20.

    Google Scholar 

  65. Song, Y. C., Wang, D. Z., Yin, J. L., Li, J. J., Cai, K. B. 2019. Experimental studies on bubble breakup mechanism in a venturi bubble generator. Ann Nucl Energy, 130: 259–270.

    Google Scholar 

  66. Soubiran, J., Sherwood, J. D. 2000. Bubble motion in a potential flow within a Venturi. Int J Multiphase Flow, 26: 1771–1796.

    MATH  Google Scholar 

  67. Sparrow, E. M., Abraham, J. P., Minkowycz, W. J. 2009. Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle. Int J Heat Mass Tran, 52: 3079–3083.

    MATH  Google Scholar 

  68. Sun, L. C., Mo, Z. Y., Zhao, L., Liu, H. T., Guo, X., Ju, X. F., Bao, J. J. 2017. Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Ann Nucl Energy, 109: 69–81.

    Google Scholar 

  69. Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., Kobayashi, D. 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci, 66: 3172–3179.

    Google Scholar 

  70. Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2011. Fluctuation of void fraction in the microbubble generator with a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10014.

    Google Scholar 

  71. Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2012. Study on bubble breakup behavior in a Venturi tube. Multiphase Sci Tech, 24: 257–277.

    Google Scholar 

  72. Unyaphan, S., Tarnpradab, T., Takahashi, F., Yoshikawa, K. 2017. Improvement of tar removal performance of oil scrubber by producing syngas microbubbles. Appl Energy, 205: 802–812.

    Google Scholar 

  73. Van der Geld, C. W. M., van Wingaarden, H., Brand, B. A. 2001. Experiments on the effect of acceleration on the drag of tapwater bubbles. Exp Fluids, 31: 708–722.

    Google Scholar 

  74. Wang, Y. C., Chen, E. 2002. Effects of phase relative motion on critical bubbly flows through a converging-diverging nozzle. Phys Fluids, 14: 3215–3223.

    MATH  Google Scholar 

  75. Wilkinson, P. M., van Schayk, A., Spronken, J. P. M., van Dierendonck, L. L. 1993. The influence of gas density and liquid properties on bubble breakup. Chem Eng Sci, 48: 1213–1226.

    Google Scholar 

  76. Wu, Z. H., Chen, H. B., Dong, Y. M., Mao, H. L., Sun, J. L., Chen, S. F., Craig, V. S. J., Hu, J. 2008. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J Colloid Interf Sci, 328: 10–14.

    Google Scholar 

  77. Xu, Q. Y., Nakajima, M., Ichikawa, S., Nakamura, N., Shiina, T. 2008. A comparative study of microbubble generation by mechanical agitation and sonication. Innov Food Sci Emerg, 9: 489–494.

    Google Scholar 

  78. Yin, J. L., Li, J. J., Li, H., Liu, W., Wang, D. Z. 2015. Experimental study on the bubble generation characteristics for a Venturi type bubble generator. Int J Heat Mass Transf, 91: 218–224.

    Google Scholar 

  79. Yoshida, A., Takahashi, O., Ishii, Y., Sekimoto, Y., Kurata, Y. 2008. Water purification using the adsorption characteristics of microbubbles. Jpn J Appl Phys, 47: 6574–6577.

    Google Scholar 

  80. Zahradnik, J., Fialová, M., Linek, V., Sinkule, J., Reznícková, J., Kaštánek, F. 1997. Dispersion efficiency of ejector-type gas distributors in different operating modes. Chem Eng Sci, 52: 4499–4510.

    Google Scholar 

  81. Zhao, L., Mo, Z. Y., Sun, L. C., Xie, G., Liu, H. T., Du, M., Tang. J. G. 2017. A visualized study of the motion of individual bubbles in a Venturi-type bubble generator. Prog Nucl Energ, 97: 74–89.

    Google Scholar 

  82. Zhao, L., Sun, L. C., Mo, Z. Y., Du, M., Huang, J., Bao, J. J., Tang, J. G., Xie, G. 2019. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. Int J Multiphase Flow, 114: 192–206.

    Google Scholar 

  83. Zhao, L., Sun, L. C., Mo, Z. Y., Tang, J. G., Hu, L. Y., Bao, J. J. 2018. An investigation on bubble motion in liquid flowing through a rectangular Ventutri channel. Exp Therm Fluid Sci, 97: 48–58.

    Google Scholar 

  84. Zhou, H., Smith, D. W. 2000. Ozone mass transfer in water and wastewater treatment: Experimental observations using a 2D laser particle dynamics analyzer. Water Res, 34: 909–921.

    Google Scholar 

  85. Zhou, Y. M., Sun, Z. N., Gu, H. F., Miao, Z. 2016. Performance of iodide vapour absorption in the Venturi scrubber working in self-priming mode. Ann Nucl Energy, 87: 426–434.

    Google Scholar 

Download references

Acknowledgments

The authors are profoundly grateful to the financial supports of the National Natural Science Foundation of China (Grant Nos. 51706149, 51709191, 51606130) and Sichuan Science and Technology Program (Grant No. 19ZX0148Z090101001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Licheng Sun or Hongtao Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Sun, L., Liu, H. et al. A review on bubble generation and transportation in Venturi-type bubble generators. Exp. Comput. Multiph. Flow 2, 123–134 (2020). https://doi.org/10.1007/s42757-019-0049-3

Download citation

Keywords

  • Venturi-type bubble generator
  • performance
  • bubble transportation
  • bubble breakup mechanism