Falling film liquid desiccant air dehumidification

Abstract

Falling film liquid desiccant dehumidification technology is attracting more and more attention due to lower energy consumption, less pollution, and more flexible humidity control in recent years. This paper conducts a comprehensive review on falling film liquid desiccant dehumidification systems. Firstly, the working principles and features of the liquid desiccant dehumidification are introduced to describe the dehumidification process. The existing liquid desiccants including organic and inorganic desiccants are reviewed. Then, the structures of falling film dehumidifiers including both adiabatic dehumidifiers and internally-cooled dehumidifiers are described. Besides, the simulation models of falling film dehumidifiers, such as finite difference models, effectiveness NTU (ε-NTU) models and simplified simulation models are summarized. Finally, the exiting performance enhancing methods of falling film dehumidifiers are collected, which provide valuable guidance to researchers and engineers to improve the dehumidification performance.

This is a preview of subscription content, access via your institution.

References

  1. Ali, A., Vafai, K., Khaled, A. R. A. 2004. Analysis of heat and mass transfer between air and falling film in a cross flow configuration. Int J Heat Mass Tran, 47: 743–755.

    Google Scholar 

  2. Brundrett, G. W. 1989. Hand book of dehumidification technology. Dry Technol, 7: 143–147.

    Google Scholar 

  3. Chen, P. 2002. Investigation on the heat-mass transfer on vertical tube of falling film of water vapor absorption aqueous lithium bromide. Dalian University of Technology, China. (in Chinese)

    Google Scholar 

  4. Chen, X. Y., Li, Z., Jiang, Y., Qu, K. Y. 2006. Analytical solution of adiabatic heat and mass transfer process in packed-type liquid desiccant equipment and its application. Sol Energy, 80: 1509–1516.

    Google Scholar 

  5. Cheng, W. L., Chen, Z. S. 2002. Experimental study of steam absorption into aqueous lithium bromide with vapor of additive. Fluid Machinery, 30: 40–43. (in Chinese)

    Google Scholar 

  6. Cheng, W. L., Zhao, R., Liu, C., Jiang, S. L., Chen, Z. S. 2006. Experimental study of influence of additives on ammonia bubble absorption. J Refrig, 27: 35–40. (in Chinese)

    Google Scholar 

  7. Cho, H. C., Kang, Y. T., Kim, C. D. 2002. Effect of surface roughness of micro-scale hatched tubes Don the absorption performance. In: Proceedings of the International Sorption Heat Pump Conference: 300–304.

  8. Chung, T. W., Luo, C. M. 1999. Vapor pressures of the aqueous desiccants. J Chem Eng Data, 44: 1024–1027.

    Google Scholar 

  9. Chung, T. W., Wu, H. 2000. Comparison between spray towers with and without fin coils for air dehumidification using triethylene glycol solutions and development of the mass-transfer correlations. Ind Eng Chem Res, 39: 2076–2084.

    Google Scholar 

  10. Conde, M. R. 2004. Properties of aqueous solutions of lithium and calcium chlorides: Formulations for use in air conditioning equipment design. Int J Therm Sci, 43: 367–382.

    Google Scholar 

  11. Cui, X. Y., Shi, J. Z., Tan, C., Xu, Z. P. 2009. Investigation of plate falling film absorber with film-inverting configuration. J Heat Transf, 131: 072001.

    Google Scholar 

  12. Dai, Y. J., Zhang, H. F. 2004. Numerical simulation and theoretical analysis of heat and mass transfer in a cross flow liquid desiccant air dehumidifier packed with honeycomb paper. Energ Convers Manage, 45: 1343–1356.

    Google Scholar 

  13. Dong, C. S., Lu, L., Qi, R. H. 2017a. Model development of heat/mass transfer for internally cooled dehumidifier concerning liquid film shrinkage shape and contact angles. Build Environ, 114: 11–22.

    Google Scholar 

  14. Dong, C. S., Lu, L., Wen, T. 2017b. Experimental study on dehumidification performance enhancement by TiO2 superhydrophilic coating for liquid desiccant plate dehumidifiers. Build Environ, 124: 219–231.

    Google Scholar 

  15. Dong, C. S., Lu, L., Wen, T. 2018. Investigating dehumidification performance of solar-assisted liquid desiccant dehumidifiers considering different surface properties. Energy, 164: 978–994.

    Google Scholar 

  16. Electrical and Mechanical Services Department (EMSD). 2017. Hong Kong Energy End-use Data 2017. Available at https://www.emsd.gov.hk/filemanager/en/content_762/HKEEUD2017.pdf.

  17. Elsarrag, E. 2006. Dehumidification of air by chemical liquid desiccant in a packed column and its heat and mass transfer effectiveness. HVAC&r Res, 12: 3–16.

    Google Scholar 

  18. Ertas, A., Anderson, E. E., Kiris, I. 1992. Properties of a new liquid desiccant solution—Lithium chloride and calcium chloride mixture. Sol Energy, 49: 205–212.

    Google Scholar 

  19. Ge, G. M., Xiao, F., Niu, X. F. 2011. Control strategies for a liquid desiccant air-conditioning system. Energ Buildings, 43: 1499–1507.

    Google Scholar 

  20. Hellmann, H. M., Grossman, G. 1995. Simulation and analysis of an open-cycle dehumidifier-evaporator-regenerator (DER) absorption chiller for low-grade heat utilization. Int J Refrig, 18: 177–189.

    Google Scholar 

  21. Hihara, E., Saito, T. 1993. Effect of surfactant on falling film absorption. Int J Refrig, 16: 339–346.

    Google Scholar 

  22. Hueffed, A. K., Chamra, L. M., Mago, P. J. 2009. A simplified model of heat and mass transfer between air and falling-film desiccant in a parallel-plate dehumidifier. J Heat Transf, 131: 052001.

    Google Scholar 

  23. Islam, M. R., Ho, J. C., Wijeysundera, N. E. 2006. A study of heat and mass transfer in falling films of film-inverting absorbers. In: Proceedings of the 13th International Heat Transfer Conference.

  24. Islam, M. R., Wijeysundera, N. E., Ho, J. C. 2003. Performance study of a falling-film absorber with a film-inverting configuration. Int J Refrig, 26: 909–917.

    Google Scholar 

  25. Jain, S., Bansal, P. K. 2007. Performance analysis of liquid desiccant dehumidification systems. Int J Refrig, 30: 861–872.

    Google Scholar 

  26. Jain, S., Dhar, P. L., Kaushik, S. C. 2000. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system. Appl Therm Eng, 20: 253–267.

    Google Scholar 

  27. Jiang, Y., Li, Z., Chen, X. L., Liu, X. H. 2004. Liquid desiccant air conditioning system and its applications. J HV&AC, 34: 88–98.

    Google Scholar 

  28. Kaita, Y. 2001. Thermodynamic properties of lithium bromide-water solutions at high temperatures. Int J Refrig, 24: 374–390.

    Google Scholar 

  29. Kang, Y. T., Kashiwagi, T. 2002. Heat transfer enhancement by Marangoni convection in the NH3–H2O absorption process. Int J Refrig, 25: 780–788.

    Google Scholar 

  30. Kang, Y. T., Kim, J.-K., Jeong, J., Park, C., Akisawa, A., Kashiwagi, T. 2006. Mass transfer enhancement of a binary nanofluid for absorption application. In: Proceedings of the 13th International Heat Conference.

  31. Kang, Y. T., Kim, J.-K., Park, C. W. 2002. The effect of micro-surface treatment on heat and mass transfer performance for falling film absorption process. In: Proceedings of the International Heat Transfer Conference: 277–282

  32. Kern, D. Q. 1997. Process Heat Transfer. Tata McGraw-Hill Education.

  33. Kessling, W., Laevemann, E., Kapfhammer, C. 1998. Energy storage for desiccant cooling systems component development. Sol Energy, 64: 209–221.

    Google Scholar 

  34. Khan, A. Y., Ball, H. D. 1992. Development of a generalized model for performance evaluation of packed-type liquid sorbent dehumidifiers and regenerators. In: Proceedings of the ASHRAE Winter Meeting: 525–533.

  35. Lee, K. I., Kim, H. J., Jung, J. H. 2007. An experimental study on the falling film heat transfer for binary nano-fluids. In: Proceedings of the 18th International Symposium on Transports Phenomena: 1107–1110.

  36. Li, Z. 2003. Liquid desiccant air conditioning and independent humidity control air conditioning systems. J HV&A, 33: 26–31.

    Google Scholar 

  37. Liu, J., Zhang, T., Liu, X. H., Jiang, J. J. 2015. Experimental analysis of an internally-cooled/heated liquid desiccant dehumidifier/regenerator made of thermally conductive plastic. Energ Buildings, 99: 75–86.

    Google Scholar 

  38. Liu, X. H., Chang, X. M., Xia, J. J., Jiang, Y. 2009. Performance analysis on the internally cooled dehumidifier using liquid desiccant. Build Environ, 44: 299–308.

    Google Scholar 

  39. Liu, X. H., Jiang, Y., Qu, K. Y. 2008. Analytical solution of combined heat and mass transfer performance in a cross-flow packed bed liquid desiccant air dehumidifier. Int J Heat Mass Tran, 51: 4563–4572.

    MATH  Google Scholar 

  40. Lof, G. O. G. 1955. Cooling with solar energy. Congress on Solar Energy, Tucson, USA: 171–189.

  41. Lowenstein, A. 2008. Review of liquid desiccant technology for HVAC applications. HVAC&r Res, 14: 819–839.

    Google Scholar 

  42. Lowenstein, A., Slayzak, S., Kozubal, E. 2006. A zero carryover liquid-desiccant air conditioner for solar applications. In: Proceedings of the ASME 2006 International Solar Energy Conference: 397–407.

  43. Luo, Y. M., Yang, H. X., Lu, L., Qi, R. H. 2014. A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier. Renew Sust Energ Rev, 31: 587–599.

    Google Scholar 

  44. Ma, X. H., Su, F. M., Lan, Z., Chen, J. 2008. Experimental study on the thermal physical properties of a CNTs-ammonia binary nanofluid. In: Proceedings of the ASME 2008 1st International Conference on Micro/Nanoscale Heat Transfer: MNHT2008-52153.

  45. Mazzei, P., Minichiello, F., Palma, D. 2005. HVAC dehumidification systems for thermal comfort: A critical review. Appl Therm Eng, 25: 677–707.

    Google Scholar 

  46. McNeely, L. A. 1979. Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans, 85: 412–434.

    Google Scholar 

  47. Mesquita, L. C. S., Harrison, S. J., Thomey, D. 2006. Modeling of heat and mass transfer in parallel plate liquid-desiccant dehumidifiers. Sol Energy, 80: 1475–1482.

    Google Scholar 

  48. Nakao, K., Ozaki, E., Yamanaka, G. 1986. Study on vertical type heat exchanger for absorption heat transformer. In: Proceedings of the National Heat Transfer Symposium of Japan: 367–369.

  49. Nishimura, N., Nomura, T., Lyot, H. 2002. Investigation of absorption enhancement by a surfactant. In: Proeeedings of the Intemational Sorption Heat Pump Conference: 373–377.

  50. Pang, C. W., Wu, W. D., Sheng, W., Zhang, H., Kang, Y. T. 2012. Mass transfer enhancement by binary nanofluids (NH3/H2O + Ag nanoparticles) for bubble absorption process. Int J Refrig, 35: 2240–2247.

    Google Scholar 

  51. Park, M. S., Howell, J. R., Vliet, G. C., Peterson, J. 1994. Numerical and experimental results for coupled heat and mass transfer between a desiccant film and air in cross-flow. Int J Heat Mass Tran, 37: 395–402.

    Google Scholar 

  52. Peng, S. W., Pan, Z. M. 2009. Heat and mass transfer in liquid desiccant air-conditioning process at low flow conditions. Commun Nonlinear Sci, 14: 3599–3607.

    Google Scholar 

  53. Pérez-Lombard, L., Ortiz, J., Coronel, J. F., Maestre, I. R. 2011. A review of HVAC systems requirements in building energy regulations. Energ Buildings, 43: 255–268.

    Google Scholar 

  54. Pesaran, A. A., Parent, Y. O., Meckler, M., Novosel, D. 1994. Evaluation of a liquid-desiccant-enhanced heat-pipe air preconditioner (No. NREL/TP-472-7015; CONF-950104-2). National Renewable Energy Lab., Golden, CO, United States.

    Google Scholar 

  55. Qi, R. H., Dong, C. S., Zhang, L. Z. 2019. Wave-wise falling film in liquid desiccant dehumidification systems: Model development and time-series parameter analysis. Int J Heat Mass Tran, 132: 96–106.

    Google Scholar 

  56. Qi, R. H., Lu, L., Yang, H. X. 2013. Development of simplified prediction model for internally cooled/heated liquid desiccant dehumidification system. Energ Buildings, 59: 133–142.

    Google Scholar 

  57. Queiroz, A. G., Orlando, A. F., Saboya, F. E. M. 1988. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system. J Sol Energ, 110: 120–124.

    Google Scholar 

  58. Rafique, M. M., Gandhidasan, P., Bahaidarah, H. M. S. 2016. Liquid desiccant materials and dehumidifiers—A review. Renew Sust Energ Rev, 56: 179–195.

    Google Scholar 

  59. Ramm, V. H. 1968. Absorption of gases. Israel Program for Scienti®c Translations, Jerusalem.

  60. Ren, C. Q., Tu, M., Wang, H. H. 2007. An analytical model for heat and mass transfer processes in internally cooled or heated liquid desiccant-air contact units. Int J Heat Mass Tran, 50: 3545–3555.

    MATH  Google Scholar 

  61. Saman, W. Y., Alizadeh, S. 2002. An experimental study of a cross-flow type plate heat exchanger for dehumidification/cooling. Sol Energy, 73: 59–71.

    Google Scholar 

  62. Stevens, D. I., Braun, J. E., Klein, S. A. 1989. An effectiveness model of liquid-desiccant system heat/mass exchangers. Sol Energy, 42: 449–455.

    Google Scholar 

  63. Stoecker, W. F. 1989. Design of Thermal Systems, 3rd edn. McGraw-Hill.

  64. Studak, J. W., Peterson, J. L. 1988. A preliminary evaluation of alternative liquid desiccants for a hybrid desiccant air conditioner. In: Proceedings of the 5th Symposium on Improving Building Systems in Hot and Humid Climates: 155–159.

  65. Treybal, R. E. 1981. Mass Transfer Operations, 3rd edn. McGraw-Hill.

  66. Tuominen, P., Holopainen, R., Eskola, L., Jokisalo, J., Airaksinen, M. 2014. Calculation method and tool for assessing energy consumption in the building stock. Build Environ, 75: 153–160.

    Google Scholar 

  67. Wen, T., Lu, L., Dong, C. S. 2018a. Enhancing the dehumidification performance of LiCl solution with surfactant PVP-K30. Energ Buildings, 171: 183–195.

    Google Scholar 

  68. Wen, T., Lu, L., Dong, C. S., Luo, Y. M. 2018b. Investigation on the regeneration performance of liquid desiccant by adding surfactant PVP-K30. Int J Heat Mass Tran, 123: 445–454.

    Google Scholar 

  69. Yang, Y., Li, X. G., Li, W. Y., Fang, C. C., Qi, X. L. 2000. Experimental study on the characteristics of solar powered liquid dehumidification system. Acta Energiae Solaris Sinica, 21: 155–159.

    Google Scholar 

  70. Yin, Y. G., Zhang, X. S., Peng, D. G., Li, X. W. 2009. Model validation and case study on internally cooled/heated dehumidfier/regenerator of liquid desiccant systems. Int J Therm Sci, 48: 1664–1671.

    Google Scholar 

  71. Zhang, T., Liu, X. H., Jiang, J. J., Chang, X. M., Jiang, Y. 2013. Experimental analysis of an internally-cooled liquid desiccant dehumidifier. Build Environ, 63: 1–10.

    Google Scholar 

  72. Zhi, J. H., Dong, C. S., Guo, M. M., Qi, R. H., Zhang, L. Z. 2019. Wettability and performance enhancement with durable superhydrophilic surfaces for plastic liquid desiccant dehumidification systems. Energ Buildings, 187: 77–85.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuanshuai Dong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Hibiki, T., Zhang, L. et al. Falling film liquid desiccant air dehumidification. Exp. Comput. Multiph. Flow 2, 187–198 (2020). https://doi.org/10.1007/s42757-019-0036-8

Download citation

Keywords

  • falling film
  • liquid desiccant dehumidification
  • dehumidification performance
  • energy consumption