Simultaneous measurements of two phases using an optical probe

Abstract

For a detailed characterisation of multiphase flows, a local measurement technique that is capable of quantifying both continuous and dispersed phases has to be employed. In the present study, a new optical probe was tested for its ability to provide simultaneous local measurements of gas and liquid/solid in a three-phase system. The new probe can measure the intensity of light reflection due to the presence of gas or liquid medium surrounding the probe tip in conjunction with the Doppler frequency caused by the approach of a solid particle. The experiments were carried out in a pseudo-2D rectangular column by passing gas bubbles through a stationary liquid with suspended seeding particles. In these experiments, measurements were carried out by using three techniques namely optical probe, particle image velocimetry (PIV), and high-speed imaging (HSI). PIV measurements were used to validate seeding particle velocity obtained using the optical probe, whereas HSI technique was used to validate bubble chord length data from optical probe. The difference between the particle velocity from the probe and PIV was in a range of 13%–20%, w hile the difference between chord length measured by the probe and HSI was within ±8%.

This is a preview of subscription content, access via your institution.

References

  1. A2 Photonic Sensors. 2019. Available at http://www.a2photonicsensors.com/en/index.html.

  2. Andreussi, P., di Donfrancesco, A., Messia, M. 1988. An impedance method for the measurement of liquid hold-up in two-phase flow. Int J Multiphase Flow, 14: 777–785.

    Article  Google Scholar 

  3. Besagni, G., Brazzale, P., Fiocca, A., Inzoli, F. 2016. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes. Flow Meas Instrum, 52: 190–207.

    Article  Google Scholar 

  4. Cartellier, A. 1992. Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas-liquid two-phase flows. Rev Sci Instrum, 63: 5442–5453.

    Article  Google Scholar 

  5. Chang, K.-A., Lim, H.-J., Su, C.-B. 2003. Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Rev Sci Instrum, 74: 3559–3565.

    Article  Google Scholar 

  6. Chaouki, J., Larachi, F., Dudukovic, M. 1997. Non-Invasive Monitoring of Multiphase Flows. Elsevier.

  7. Chen, R. C., Fan, L.-S. 1992. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem Eng Sci, 47: 3615–3622.

    Article  Google Scholar 

  8. Chugh, D., Roy, S., Shao, J., Al-Dahhan, M. H. 2017. Experimental investigation of gas-liquid flow in monolith channels using monofiber optical probes. AIChE J, 63: 327–336.

    Article  Google Scholar 

  9. Da Silva, M. J., Schleicher, E., Hampel, U. 2007. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions. Meas Sci Technol, 18: 2245–2251.

    Article  Google Scholar 

  10. Dong, F., Xu, Y. B., Xu, L. J., Hua, L., Qiao, X. T. 2005. Application of dual-plane ERT system and cross-correlation technique to measure gas-liquid flows in vertical upward pipe. Flow Meas Instrum, 16: 191–197.

    Article  Google Scholar 

  11. Dyakowski, T. 1996. Process tomography applied to multi-phase flow measurement. Meas Sci Technol, 7: 343–353.

    Article  Google Scholar 

  12. Elkow, K. J., Rezkallah, K. S. 1996. Void fraction measurements in gas-liquid flows using capacitance sensors. Meas Sci Technol, 7: 1153–1163.

    Article  MATH  Google Scholar 

  13. Ferreira, T., Rasband, W. 2012. ImageJ user guide. ImageJ/Fiji, 1: 155–161.

    Google Scholar 

  14. Fossa, M. 1998. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows. Flow Meas Instrum, 9: 103–109.

    Article  Google Scholar 

  15. Ismail, I., Gamio, J. C., Bukhari, S. F. A., Yang, W. Q. 2005. Tomography for multi-phase flow measurement in the oil industry. Flow Meas Instrum, 16: 145–155.

    Article  Google Scholar 

  16. Lee, B. W., Dudukovic, M. P. 2014. Time-series analysis of optical probe measurements in gas-liquid stirred tanks. Chem Eng Sci, 116: 623–634.

    Article  Google Scholar 

  17. Lucas, P., Mishra, R. 2005. Measurement of bubble velocity components in a swirling gas-liquid pipe flow using a local four-sensor conductance probe. Meas Sci Technol, 16: 749–758.

    Article  Google Scholar 

  18. Manjrekar, O. N., Dudukovic, M. P. 2015. Application of a 4-point optical probe to a slurry bubble column reactor. Chem Eng Sci, 131: 313–322.

    Article  Google Scholar 

  19. McGuinn, R. S., Gysling, D. L., Winston, C. R., Davis, A. R., Faustino, J. M. 2002. Non-intrusive fiber optic pressure sensor for measuring unsteady pressures within a pipe. U.S. Patent No. 6,450,037.

    Google Scholar 

  20. Mokhtari, M., Chaouki, J. 2019. New technique for simultaneous measurement of the local solid and gas holdup by using optical fiber probes in the slurry bubble column. Chem Eng J, 358: 831–841.

    Article  Google Scholar 

  21. Mota, A., Ferreira, A., Vicente, A. A., Sechet, P., Martins, J. M. F., Teixeira, J. A., Cartellier, A. 2015. Customization of an optical probe device and validation of a signal processing procedure to study gas-liquid-solid flows. Application to a three-phase internal-loop gas-lift bioreactor. Chem Eng Sci, 138: 814–826.

    Google Scholar 

  22. Prakash, B., Bhatelia, T., Wadnerkar, D., Shah, M. T., Pareek, V. K., Utikar, R. P. 2019. Vortex shape and gas-liquid hydrodynamics in unbaffled stirred tank. Can J Chem Eng, 97: 1913–1920.

    Article  Google Scholar 

  23. Prakash, B., Shah, M. T., Pareek, V. K., Utikar, R. P. 2018. Impact of HSPBT blade angle on gas phase hydrodynamics in a gas-liquid stirred tank. Chem Eng Res Des, 130: 219–229.

    Article  Google Scholar 

  24. Prasser, H.-M., Böttger, A., Zschau, J. 1998. A new electrode-mesh tomograph for gas-liquid flows. Flow Meas Instrum, 9: 111–119.

    Article  Google Scholar 

  25. Rahim, R. A., Rahiman, M. H. F., Chan, K. S., Nawawi, S. W. 2007. Non-invasive imaging of liquid/gas flow using ultrasonic transmission-mode tomography. Sensor Actuat A: Phys, 135: 337–345.

    Article  Google Scholar 

  26. Spajer, M., Bergossi, O., Guignard, M. 1994. A scanning local probe profilometer and reflectometer: Application to optical control of integrated circuits. Opt Commun, 106: 139–145.

    Article  Google Scholar 

  27. Tyagi, P., Buwa, V. V. 2017. Experimental characterization of dense gas-liquid flow in a bubble column using voidage probes. Chem Eng J, 308: 912–928.

    Article  Google Scholar 

  28. Wedin, R., Davoust, L., Cartellier, A., Dahlkild, A. 2000. A mono-modal fiber-optices velocimeter for electrochemically generated bubbles. In: Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Dynamics 10–13.

    Google Scholar 

  29. Wolf, H. A., Walter, R. E., Hofmann, L., Cody, G. D., Storch Jr., G. V. 1993. Non-intrusive flow meter for the liquid based on solid, liquid or gas borne sound. U.S. Patent 5,207,107.

    Google Scholar 

  30. Zhai, L.-S., Bian, P., Gao, Z. K., Jin, N. D. 2016. The measurement of local flow parameters for gas-liquid two-phase bubbly flows using a dual-sensor probe array. Chem Eng Sci, 144: 346–363.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjeet P. Utikar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prakash, B., Parmar, H., Shah, M.T. et al. Simultaneous measurements of two phases using an optical probe. Exp. Comput. Multiph. Flow 1, 233–241 (2019). https://doi.org/10.1007/s42757-019-0025-y

Download citation

Keywords

  • experiments
  • multiphase
  • particle image velocimetry (PIV)
  • optical probe