Laser-induced vapour bubble as a means for crystal nucleation in supersaturated solutions—Formulation of a numerical framework

Abstract

We use in this work numerical simulations to investigate the evolution of a laser-induced vapour bubble with a special focus on the resolution of a thin layer of liquid around the bubble. The application of interest is laser-induced crystallization, where the bubble acts as a nucleation site for crystals. Experimental results indicate the extreme dynamics of these bubbles where the interface during the period of 200 us, from nucleation to collapse, reaches a maximum radius of roughly 700 µm and attains a velocity of well above 20 m/s. To fully resolve the dynamics of the bubble, the volume of fluid (VOF) numerical framework is used. Inertia, thermal effects, and phase-change phenomena are identified as the governing phenomena for the bubble dynamics. We develop and implement into our numerical framework an interface phase-change model that takes into account both evaporation and condensation. The performed simulations produce qualitatively promising results that are in fair agreement with both experiments and analytical solutions from the literature. The reasons behind the observed differences are discussed and suggestions are made for future improvements of the framework.

References

  1. Brackbill, J. U., Kothe, D. B., Zemach, C. 1992. A continuum method for modeling surface tension. J Comput Phys, 100: 335–354.

    MathSciNet  Article  MATH  Google Scholar 

  2. Brennen, C. E. 1995. Cavitation and Bubble Dynamcis. Oxford University Press.

  3. Denner, F., van Wachem, B. G. M. 2015. Numerical time-step restrictions as a result of capillary waves. J Comput Phys, 285: 24–40.

    MathSciNet  Article  MATH  Google Scholar 

  4. Garetz, B. A., Aber, J. E., Goddard, N. L., Young, R. G., Myerson, A. S. 1996. Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys Rev Lett, 77: 3475–3476.

    Article  Google Scholar 

  5. Gibou, F., Chen, L. G., Nguyen, D., Banerjee, S. 2007. A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change. J Comput Phys, 222: 536–555.

    MathSciNet  Article  MATH  Google Scholar 

  6. Hardt, S., Wondra, F. 2008. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. J Comput Phys, 227: 5871–5895.

    MathSciNet  Article  MATH  Google Scholar 

  7. Iefuji, N., Murai, R., Maruyama, M., Takahashi, Y., Sugiyama, S., Adachi, H., Matsumura, H., Murakami, S., Inoue, T., Mori, Y., Koga, Y., Takano, K., Kanaya, S. 2011. Laser-induced nucleation in protein crystallization: Local increase in protein concentration induced by femtosecond laser irradiation. J Cryst Growth, 318: 741–744.

    Article  Google Scholar 

  8. Kharangate, C. R., Mudawar, I. 2017. Review of computational studies on boiling and condensation. Int J Heat Mass Tran, 108: 1164–1196.

    Article  Google Scholar 

  9. Knott, B. C., LaRue, J. L., Wodtke, A. M., Doherty, M. F., Peters, B. 2011. Communication: Bubbles, crystals, and laser-induced nucleation. J Chem Phys, 134: 171102.

    Article  Google Scholar 

  10. Knudsen, M., Partington, J. R. 1935. The kinetic theory of gases: Some modern aspects. J Phys Chem, 39: 307.

    Article  Google Scholar 

  11. Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R., Lauterborn, W. 2016. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids, 126: 71–90.

    MathSciNet  Article  MATH  Google Scholar 

  12. Kunkelmann, C. 2011. Numerical modeling and investigation of boiling phenomena. Doctoral Dissertation. Technische Universität.

  13. Magaletti, F., Marino, L., Casciola, C. M. 2015. Shock wave formation in the collapse of a vapor nanobubble. Phys Rev Lett, 114: 064501.

    Article  Google Scholar 

  14. Magnini, M., Pulvirenti, B. 2011. Height function interface reconstruction algorithm for the simulation of boiling flows. In: Computational Methods in Multiphase Flow VI. Southampton, UK: WIT Press, 69–80.

    Google Scholar 

  15. Marek, R., Straub, J. 2001. Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Tran, 44: 39–53.

    Article  MATH  Google Scholar 

  16. Mirsaleh-Kohan, N., Fischer, A., Graves, B., Bolorizadeh, M., Kondepudi, D., Compton, R. N. 2017. Laser shock wave induced crystallization. Cryst Growth Des, 17: 576–581.

    Article  Google Scholar 

  17. Nakamura, K., Hosokawa, Y., Masuhara, H. 2007. Anthracene crystallization induced by single-shot femtosecond laser irradiation: Experimental evidence for the important role of bubbles Cryst Growth Des, 7: 885–889.

    Article  Google Scholar 

  18. Plesset, M. S. 1949. The dynamics of cavitation bubbles. J Appl Mech, 16: 277–282.

    Google Scholar 

  19. Quinto-Su, P. A., Lim, K. Y., Ohl, C. D. 2009. Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E, 80: 047301.

    Article  Google Scholar 

  20. Rayleigh, L. 1917. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34: 94–98.

    Article  MATH  Google Scholar 

  21. Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N., Cains, P. W. 2005. Sonocrystallization: The use of ultrasound for improved industrial crystallization. Org Process Res Dev, 9: 923–932.

    Article  Google Scholar 

  22. Sagar, H. J., el Moctar, O. 2018. Numerical simulation of a laser-induced cavitation bubble near a solid boundary considering phase change. Ship Technol Res, 65: 163–179.

    Article  Google Scholar 

  23. Schrage, R. W. 1953. A Theoretical Study of Interphase Mass Transfer. New York: Columbia University Press.

    Google Scholar 

  24. Scriven, L. E. 1959. On the dynamics of phase growth. Chem Eng Sci, 10: 1–13.

    Article  Google Scholar 

  25. Soare, A. 2014. Technologies for Optimisation and Control of Nucleation and Growth for New Generations of Industrial Crystallizers. Ipskamp Drukkers.

  26. Soare, A., Dijkink, R., Pascual, M. R., Sun, C., Cains, P. W., Lohse, D., Stankiewicz, A. I., Kramer, H. J. M. 2011. Crystal nucleation by laser-induced cavitation. Cryst Growth Des, 11: 2311–2316.

    Article  Google Scholar 

  27. Sun, C., Can, E., Dijkink, R. O. R. Y., Lohse, D. E. T. L. E. F., Prosperetti, A. N. D. R. E. A. 2009. Growth and collapse of a vapour bubble in a microtube: The role of thermal effects. J Fluid Mech, 632: 5–16.

    Article  MATH  Google Scholar 

  28. Tanasawa, I. 1991. Advances in condensation heat transfer. In: Advances in Heat Transfer. Hartnett, J. P., Irvine, T. F. Eds. San Diego: Academic Press.

    Google Scholar 

  29. Tatalovic, M. 2009. Crystals grown in a ash. Available at http://www.nature.com/news/2009/090805/full/news.2009.801.html.

  30. Yoshikawa, H. Y., Murai, R., Adachi, H., Sugiyama, S., Maruyama, M., Takahashi, Y., Takano, K., Matsumura, H., Inoue, T., Murakami, S., Masuhara, H., Mori, Y. 2014. Laser ablation for protein crystal nucleation and seeding. Chem Soc Rev, 43: 2147–2158.

    Article  Google Scholar 

  31. Zein, A., Hantke, M., Warnecke, G. 2013. On the modeling and simulation of a laser-induced cavitation bubble. Int J Numer Method in Fluids, 73: 172–203.

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was conducted with funding from Sweden’s Innovation Agency VINNOVA, grant 2016-03407, and the Swedish Research Council (Vetenskapsrådet), grant VR 2017-05031. The computations were performed on resources at Chalmers Centre for Computational Science and Engineering (C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niklas Hidman.

Rights and permissions

Open Access : This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hidman, N., Sardina, G., Maggiolo, D. et al. Laser-induced vapour bubble as a means for crystal nucleation in supersaturated solutions—Formulation of a numerical framework. Exp. Comput. Multiph. Flow 1, 242–254 (2019). https://doi.org/10.1007/s42757-019-0024-z

Download citation

Keywords

  • laser-induced cavitation
  • vapour bubble
  • volume of fluid
  • crystal nucleation