One-dimensional drift-flux correlations for two-phase flow in medium-size channels

A Correction to this article was published on 08 January 2021

A Correction to this article was published on 08 January 2021

This article has been updated

Abstract

The drift-flux parameters such as distribution parameter and drift velocity are critical parameters in the one-dimensional two-fluid model used in nuclear thermal-hydraulic system analysis codes. These parameters affect the drag force acting on the gas phase. The accurate prediction of the drift-flux parameters is indispensable to the accurate prediction of the void fraction. Because of this, the current paper conducted a state-of-the-art review on one-dimensional drift-flux correlations for various flow channel geometries and flow orientations. The essential conclusions were: (1) a channel geometry affected the distribution parameter, (2) a boundary condition (adiabatic or diabatic) affected the distribution parameter in a bubbly flow, (3) the drift velocity for a horizontal channel could be approximated to be zero, and (4) the distribution parameter developed for a circular channel was not a good approximation to calculate the distribution parameter for a sub-channel of the rod bundle. In addition to the above, the review covered a newly proposed concept of the two-group drift-flux model to provide the constitutive equation to close the modified gas mixture momentum equation of the two-fluid model mathematically. The review was also extended to the existing drift-flux correlations applicable to a full range of void fraction (Chexel-Lellouche correlation and Bhagwat-Ghajar correlation).

Change history

  • 08 January 2021

    The article “One-dimensional drift-flux correlations for two-phase flow in medium-size channels” written by Takashi Hibiki, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 17 April 2019 without open access. After publication in Volume 1, Issue 2, page 85–100, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (<ExternalRef><RefSource>http://creativecommons.org/licenses/by/4.0/</RefSource><RefTarget Address="http://creativecommons.org/licenses/by/4.0/" TargetType="URL"/></ExternalRef>), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

  • 08 January 2021

    The article “One-dimensional drift-flux correlations for two-phase flow in medium-size channels” written by Takashi Hibiki, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 17 April 2019 without open access. After publication in Volume 1, Issue 2, page 85–100, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (<ExternalRef><RefSource>http://creativecommons.org/licenses/by/4.0/</RefSource><RefTarget Address="http://creativecommons.org/licenses/by/4.0/" TargetType="URL"/></ExternalRef>), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. Abbs, T., Hibiki, T. 2019. One-dimensional drift-flux correlation for vertical upward two-phase flow in a large size rectangular channel. Prog Nucl Energ, 110: 311–324.

    Article  Google Scholar 

  2. Andersen, J. G. M., Chu, K. H. 1982. BWR refill-reflood program task 4.7: Constitutive correlations for shear and heat transfer for the BWR version of TRAC (No. NUREG/CR—2134). General Electric Co.

    Book  Google Scholar 

  3. Bajorek, S. 2008. TRACE/V5.0 theory manual; field equations, solutions methods, and physical models. United States Nuclear Regulatory Commission.

    Google Scholar 

  4. Baotong, S., Rassame, S., Nilsuwankosit, S., Hibiki, T. 2019. Drift-flux correlation of oil-water flow in horizontal channels. J Fluid Eng, 141: 031301.

    Article  Google Scholar 

  5. Barnea, D., Shoham, O., Taitel, Y., Dukler, A. E. 1980. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. Int J Multiphase Flow, 6: 217–225.

    Article  Google Scholar 

  6. Bhagwat, S. M., Ghajar, A. J. 2014. A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow. Int J Multiphase Flow, 59: 186–205.

    Article  Google Scholar 

  7. Borkowski, J. A., Wade, N. L., Rouhani, S. Z., Shumway, R. W., Weaver, W. L., Rettig, W. H., Kullberg, C. L. 1992. TRAC-BF1/MOD1 models and correlations (No. NUREG/CR—4391). Nuclear Regulatory Commission.

    Google Scholar 

  8. Brooks, C. S., Hibiki, T., Ishii, M. 2012a. Interfacial drag force in one-dimensional two-fluid model. Prog Nucl Energ, 61: 57–68.

    Article  Google Scholar 

  9. Brooks, C. S., Ozar, B., Hibiki, T., Ishii, M. 2012b. Two-group drift-flux model in boiling flow. Int J Heat Mass Transfer, 55: 6121–6129.

    Article  Google Scholar 

  10. Brooks, C. S., Paranjape, S. S., Ozar, B., Hibiki, T., Ishii, M. 2012c. Two-group drift-flux model for closure of the modified two-fluid model. Int J Heat Fluid Flow, 37: 196–208.

    Article  Google Scholar 

  11. Chexal, B., Lellouche, G., Horowitz, J., Healzer, J., Oh, S. 1991. The Chexal-Lellouche void fraction correlation for generalized applications. Nuclear Safety Analysis Center of the Electric Power Research Institute, USA.

    Google Scholar 

  12. Chuang, T. J., Hibiki, T. 2015. Vertical upward two-phase flow CFD using interfacial area transport equation. Prog Nucl Energ, 85: 415–427.

    Article  Google Scholar 

  13. Chuang, T. J., Hibiki, T. 2017. Interfacial forces used in two-phase flow numerical simulation. Int J Heat Mass Transfer, 113: 741–754.

    Article  Google Scholar 

  14. Colebrook, C. F. 1939. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J Inst Civ Eng, 11: 133–156.

    Article  Google Scholar 

  15. Goda, H., Hibiki, T., Kim, S., Ishii, M., Uhle, J. 2003. Drift-flux model for downward two-phase flow. Int J Heat Mass Transfer, 46: 4835–4844.

    Article  Google Scholar 

  16. Grossetete, C. 1995. Fr Caractérisation expérimentale et simulations de l’évolution d’un écoulement diphasique à bulles ascendant dans une conduite vertical. Ph.D. Thesis. Châtenay-Malabry, Ecole centrale de Paris, France.

    Google Scholar 

  17. Hibiki, T., Ishii, M. 1999. Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transfer, 42: 3019–3035.

    Article  Google Scholar 

  18. Hibiki, T., Ishii, M. 2002a. Distribution parameter and drift velocity of drift-flux model in bubbly flow. Int J Heat Mass Transfer, 45: 707–721.

    MATH  Article  Google Scholar 

  19. Hibiki, T., Ishii, M. 2002b. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967–3977.

    MATH  Article  Google Scholar 

  20. Hibiki, T., Ishii, M. 2003. One-dimensional drift-flux model for two-phase flow in a large diameter pipe. Int J Heat Mass Transfer, 46: 1773–1790.

    MATH  Article  Google Scholar 

  21. Hibiki, T., Ishii, M. 2009. Interfacial area transport equations for gas-liquid flow. J Comput Multiphase Flows, 1: 1–22.

    Article  Google Scholar 

  22. Hibiki, T., Ishii, M., Xiao, Z. 2001. Axial interfacial area transport of vertical bubbly flows. Int J Heat Mass Transfer, 44: 1869–1888.

    Article  Google Scholar 

  23. Hibiki, T., Mishima, K. 2001. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nucl Eng Des, 203: 117–131.

    Article  Google Scholar 

  24. Hibiki, T., Ozaki, T. 2017. Modeling of void fraction covariance and relative velocity covariance for upward boiling flow in vertical pipe. Int J Heat Mass Transfer, 112: 620–629.

    Article  Google Scholar 

  25. Hibiki, T., Rong, S. T., Ye, M., Ishii, M. 2003. Modeling of bubble-layer thickness for formulation of one-dimensional interfacial area transport equation in subcooled boiling two-phase flow. Int J Heat Mass Transfer, 46: 1409–1423.

    MATH  Article  Google Scholar 

  26. Hibiki, T., Schlegel, J. P., Ozaki, T., Miwa, S., Rassame, S. 2018. Simplified two-group two-fluid model for three-dimensional two-phase flow computational fluid dynamics for vertical upward flow. Prog Nucl Energ, 108: 503–516.

    Article  Google Scholar 

  27. Information System Laboratories. 2001. RELAP5/MOD3.3 code manual volume IV: Models and correlations. US NRC (NUREG/CR-5535/Rev 1-Vol.IV).

  28. Ishii, M. 1977. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Report No. ANL-77-47. Argonne National Laboratory, USA

    Book  Google Scholar 

  29. Ishii, M., Hibiki, T. 2010. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer Science & Business Media.

    MATH  Google Scholar 

  30. Ishii, M., Mishima, K. 1984. Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des, 82: 107–126.

    Article  Google Scholar 

  31. Julia, J. E., Hibiki, T. 2011. Flow regime transition criteria for two-phase flow in a vertical annulus. Int J Heat Fluid Flow, 32: 993–1004.

    Article  Google Scholar 

  32. Julia, J. E., Hibiki, T., Ishii, M., Yun, B. J., Park, G. C. 2009. Drift-flux model in a sub-channel of rod bundle geometry. Int J Heat Mass Transfer, 52: 3032–3041.

    Article  Google Scholar 

  33. Kalkach-Navarro, S. 1992. The mathematical modeling of flow regime transition in bubbly two-phase flow. Ph.D. Thesis. Rensselaer Polytechnic Institute, USA.

    Google Scholar 

  34. Kataoka, I., Ishii, M. 1987. Drift flux model for large diameter pipe and new correlation for pool void fraction. Int J Heat Mass Transfer, 30: 1927–1939.

    Article  Google Scholar 

  35. Kondo, M., Kumamaru, H., Murata, H., Anoda, Y., Kukita, Y. 1993. Core void fraction distribution under high-temperature high-pressure boil-off conditions (No. JAERI-M-93-200). Japan Atomic Energy Research Institute.

    Google Scholar 

  36. Liu, H., Hibiki, T. 2017. Flow regime transition criteria for upward two-phase flow in vertical rod bundles. Int J Heat Mass Transfer, 108: 423–433.

    Article  Google Scholar 

  37. Liu, H., Pan, L. M., Hibiki, T., Zhou, W. X., Ren, Q. Y., Li, S. S. 2018. One-dimensional interfacial area transport for bubbly two-phase flow in vertical 5×5 rod bundle. Int J Heat Fluid Flow, 72: 257–273.

    Article  Google Scholar 

  38. Liu, T. T. 1989. Experimental investigation of turbulence structure in two-phase bubbly flow. Ph.D. Thesis. Northwestern University, USA.

    Google Scholar 

  39. Lokanathan, M., Hibiki, T. 2018. Flow regime transition criteria for co-current downward two-phase flow. Prog Nucl Energ, 103: 165–175.

    Article  Google Scholar 

  40. Marchaterre, J. F. 1956. The effect of pressure on boiling density in multiple rectangular channels (Report No. ANL-5522). Argonne National Laboratory, USA.

    Book  Google Scholar 

  41. Mishima, K., Ishii, M. 1984. Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer, 27: 723–737.

    Article  Google Scholar 

  42. Morooka, S. I., Yoshida, H., Inoue, A., Oishi, M., Aoki, T., Nagaoka, K. 1991. In-bundle void measurement of BWR fuel assembly by X-ray CT scanner. In: Proceedings of the 1st JSME/ASME Joint International Conference on Nuclear Engineering, Paper No. 38.

  43. Ozaki, T., Hibiki, T. 2015. Drift-flux model for rod bundle geometry. Prog Nucl Energ, 83: 229–247.

    Article  Google Scholar 

  44. Ozaki, T., Hibiki, T. 2018. Modeling of distribution parameter, void fraction covariance and relative velocity covariance for upward steam-water boiling flow in vertical rod bundle. J Nucl Sci Tech, 55: 386–399.

    Article  Google Scholar 

  45. Ozaki, T., Suzuki, R., Mashiko, H., Hibiki, T. 2013. Development of drift-flux model based on 8×8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions. J Nucl Sci Tech, 50: 563–580.

    Article  Google Scholar 

  46. Ozar, B., Dixit, A., Chen, S. W., Hibiki, T., Ishii, M. 2012. Interfacial area concentration in gas-liquid bubbly to churn-turbulent flow regime. Int J Heat Fluid Flow, 38: 168–179.

    Article  Google Scholar 

  47. Ozar, B., Jeong, J. J., Dixit, A., Julia, J. E., Hibiki, T., Ishii, M. 2008. Flow structure of gas-liquid two-phase flow in an annulus. Chem Eng Sci, 63: 3998–4011.

    Article  Google Scholar 

  48. Rassame, S., Hibiki, T. 2018. Drift-flux correlation for gas-liquid two-phase flow in a horizontal pipe. Int J Heat Fluid Flow, 69: 33–42.

    Article  Google Scholar 

  49. Serizawa, A., Kataoka, I., Michiyoshi, I. 1991. Phase distribution in bubbly flow. In: Multiphase Science and Technology, Vol. 6. Hewitt, G. F., Delhaye, J. M., Zuber, N. Eds. Hemisphere, 257–301.

    Google Scholar 

  50. Taitel, Y., Bornea, D., Dukler, A. E. 1980. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J, 26: 345–354.

    Article  Google Scholar 

  51. Vaidheeswaran, A., Hibiki, T. 2017. Bubble-induced turbulence modeling for vertical bubbly flows. Int J Heat Mass Transfer, 115: 741–752.

    Article  Google Scholar 

  52. Yang, X., Schlegel, J. P., Liu, Y., Paranjape, S., Hibiki, T., Ishii, M. 2012. Measurement and modeling of two-phase flow parameters in scaled 8×8 BWR rod bundle. Int J Heat Fluid Flow, 34: 85–97.

    Article  Google Scholar 

  53. Zuber, N., Findlay, J. A. 1965. Average volumetric concentration in two-phase flow systems. J Heat Transfer, 87: 453–468.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takashi Hibiki.

Additional information

The original version of this article was revised due to a retrospective Open Access order.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provided a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hibiki, T. One-dimensional drift-flux correlations for two-phase flow in medium-size channels. Exp. Comput. Multiph. Flow 1, 85–100 (2019). https://doi.org/10.1007/s42757-019-0009-y

Download citation

Keywords

  • drift-flux model
  • interfacial drag force
  • distribution parameter
  • nuclear thermal-hydraulic analysis
  • interfacial transport equation