Advertisement

Numerical investigation of unsteady particle deposition in a realistic human nasal cavity during inhalation

  • Xin Gu
  • Jian Wen
  • Mengmeng Wang
  • Guanping Jian
  • Guoxi Zheng
  • Simin WangEmail author
Research Article
  • 50 Downloads

Abstract

It is important to understand the patterns of two-phase flow in human nasal cavity in exploring the nasal pathology knowledge. In this paper, a realistic human nasal cavity geometry obtained from CT scans was applied to investigate the unsteady particle deposition during inhalation. The transient airflow pattern in the nasal cavity was investigated through imposing two sine wave curves at inlet with the tidal volume of 159 and 318 mL. The time-varying particle deposition pattern in the nasal cavity and a comparison of deposition characteristic between steady and unsteady inhalation were studied using the Lagrangian approach. By releasing particles continuously during inhalation, it was found that the highest transient deposition appeared about 1.4 s and the particle deposition at different time intervals was strongly depended on the instantaneous inlet flow rate. The total deposition of micro particles ranging from 1 to 20 μm under unsteady inhalation was almost the same as that at steady state when the volume of inhaled airflow was equivalent. The deposition in the anterior region of the nasal cavity was overestimated at steady state for ignoring the gravity effects at the beginning and ending of unsteady inhalation. T he results of this paper can be used for both toxicological and therapeutic applications.

Keywords

nasal cavity unsteady particle deposition inhalation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51676146), for which the authors are thankful.

References

  1. Abouali, O., Keshavarzian, E., Farhadi Ghalati, P., Faramarzi, A., Ahmadi, G., Bagheri, M. H. 2012. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Resp Physiol Neurobi, 181: 335–345.CrossRefGoogle Scholar
  2. Bahmanzadeh, H., Abouali, O., Faramarzi, M., Ahmadi, G. 2015. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery. Comput Biol Med, 61: 8–18.CrossRefGoogle Scholar
  3. Cheng, K. H., Cheng, Y. S., Yeh, H. C., Guilmette, R. A., Simpson, S. Q., Yang, Y. H., Swift, D. L. 1996. In vivo measurements of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways. J Aerosol Sci, 27: 785–801.CrossRefGoogle Scholar
  4. Cheng, Y. S. 2003. Aerosol deposition in the extrathoracic region. Aerosol Sci Tech, 37: 659–671.CrossRefGoogle Scholar
  5. Cheng, Y. S., Holmes, T. D., Gao, J., Guilmette, R. A., Li, S., Surakitbanharn, Y., Rowlings, C. 2001. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med, 14: 267–280.CrossRefGoogle Scholar
  6. Frank, D. O., Kimbell, J. S., Pawar, S., Rhee, J. S. 2012. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryng Head Neck, 146: 313–319.CrossRefGoogle Scholar
  7. Golshahi, L., Noga, M. L., Thompson, R. B., Finlay, W. H. 2011. In vitro deposition measurement of inhaled micrometer-sized particles in extrathoracic airways of children and adolescents during nose breathing. J Aerosol Sci, 42: 474–488.CrossRefGoogle Scholar
  8. Hahn, I., Scherer, P. W., Mozell, M. M. 1993. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol, 75: 2273–2287.CrossRefGoogle Scholar
  9. Häußermann, S., Bailey, A. G., Bailey, M. R., Etherington, G., Youngman, M. 2002. The influence of breathing patterns on particle deposition in a nasal replicate cast. J Aerosol Sci, 33: 923–933.CrossRefGoogle Scholar
  10. Huang, J. H., Zhang, L. Z. 2011. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle. Particuology, 9: 424–431.CrossRefGoogle Scholar
  11. Inthavong, K., Choi, L. T., Tu, J. Y., Ding, S. L., Thien, F. 2010. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys, 32: 1198–1212.CrossRefGoogle Scholar
  12. Inthavong, K., Tian, Z. F., Tu, J. Y., Yang, W., Xue, C. 2008. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput Biol Med, 38: 713–726.CrossRefGoogle Scholar
  13. Inthavong, K., Tu, J. Y., Heschl, C. 2011. Micron particle deposition in the nasal cavity using the v2-f model. Comput Fluids, 51: 184–188.CrossRefGoogle Scholar
  14. Jin, H. H., Fan, J. R., Zeng, M. J., Cen, K. F. 2007. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. J Aerosol Sci, 38: 257–268.CrossRefGoogle Scholar
  15. Kelly, J. T., Asgharian, B., Kimbell, J. S., Wong, B. A. 2004. Particle deposition in human nasal airway replicas manufactured by different methods. part I: Inertial regime particles. Aerosol Sci Tech, 38: 1063–1071.CrossRefGoogle Scholar
  16. Kelly, J. T., Prasad, A. K., Wexler, A. S. 2000. Detailed flow patterns in the nasal cavity. J Appl Physiol, 89: 323–337.CrossRefGoogle Scholar
  17. Kesavanathan, J., Swift, D. L. 1998. Human nasal passage particle deposition: the effect of particle size, flow rate, and anatomical factors. Aerosol Sci Tech, 28: 457–463.CrossRefGoogle Scholar
  18. Lee, J. H., Na, Y., Kim, S. K., Chung, S. K. 2010. Unsteady flow characteristics through a human nasal airway. Resp Physiol Neurobi, 172: 136–146.CrossRefGoogle Scholar
  19. Li, X. D., Inthavong, K., Tu, J. Y. 2012. Particle inhalation and deposition in a human nasal cavity from the external surrounding environment. Build Environ, 47: 32–39.CrossRefGoogle Scholar
  20. Liu, Y., Matida, E. A., Johnson, M. R. 2010. Experimental measurements and computational modeling of aerosol deposition in the Carleton–Civic standardized human nasal cavity. J Aerosol Sci, 41: 569–586.CrossRefGoogle Scholar
  21. Morsi, S. A., Alexander, A. J. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech, 55: 193–208.CrossRefGoogle Scholar
  22. Rasmussen, T. R., Swift, D. L., Hilberg, O., Pedersen, O. F. 1990. Influence of nasal passage geometry on aerosol particle deposition in the nose. J Aerosol Med, 3: 15–25.CrossRefGoogle Scholar
  23. Saidi, M. S., Rismanian, M., Monjezi, M., Zendehbad, M., Fatehiboroujeni, S. 2014. Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows. Atmos Environ, 89: 199–206.CrossRefGoogle Scholar
  24. Schroeter, J. D., Garcia, G. J. M., Kimbell, J. S. 2011. Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci, 42: 52–63.CrossRefGoogle Scholar
  25. Shi, H. W., Kleinstreuer, C., Zhang, Z. 2007. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci, 38: 398–419.CrossRefGoogle Scholar
  26. Wang, S. M., Inthavong, K., Wen, J., Tu, J. Y., Xue, C. L. 2009a. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Resp Physiol Neurobi, 166: 142–151.CrossRefGoogle Scholar
  27. Wang, Y., Liu, Y. X., Sun, X. Z., Yu, S., Gao, F. 2009b. Numerical analysis of respiratory flow patterns within human upper airway. Acta Mech Sinica, 25: 737–746.MathSciNetCrossRefGoogle Scholar
  28. Wen, J., Inthavong, K., Tu, J. Y., Wang, S. M. 2008. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Resp Physiol Neurobi, 161: 125–135.CrossRefGoogle Scholar
  29. Zhang, Z., Kleinstreuer, C. 2004. Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys, 198: 178–210.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Xin Gu
    • 1
  • Jian Wen
    • 1
  • Mengmeng Wang
    • 2
  • Guanping Jian
    • 3
  • Guoxi Zheng
    • 4
  • Simin Wang
    • 3
    Email author
  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Energy and Building Environment EngineeringHenan University of Urban ConstructionHenanChina
  3. 3.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina
  4. 4.Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital)Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations