Study of the deposition of graphite dust in the inlet passageway of intermediate heat exchanger in VHTR

  • Qi Sun
  • Xiao Hai
  • Kaiyuan Wang
  • Wei PengEmail author
Research Article


The impact of graphite dust on structural equipment is a potential safety hazard in HTGR. The present study focuses on the graphite particle deposition process on the deflector in the inlet passageway of intermediate heat exchanger and analyzes the effect of particle size on inertial deposition and diffusion deposition. Meanwhile, the particle rebound behavior is considered when the particle impacts the wall. To determine the relevant parameters of the rebound model, the experiments about adhesion are carried out and validated. Then the flow field is simulated in the inlet passageway of intermediate heat exchanger based on k–ε turbulent model, and particle trajectories are predicted by a discrete particle model with rebound boundary. The results show that adhesion force by measures is obviously smaller than theoretical model. In addition, the particle deposition rate decreases first and then increases, and the rebound model makes d eposition results more actual.


high-temperature gas-cooled reactor graphite dust intermediate heat exchanger (IHX) adhesion measurement 



This project was supported by the National Natural Science Foundation of China (NSFC, Grant No. 51676112), the National Key R&D Program of China (Grant No. 2018YFB1900500), and the National S&T Major Project (Grant No. ZX069).


  1. Barth, T., Kulenkampff, J., Bras, S., Gründig, M., Lippmann-Pipke, J., Hampel, U. 2014. Positron emission tomography in pebble beds. Part 2: Graphite particle deposition and resuspension. Nucl Eng Des, 267: 227–237.Google Scholar
  2. Baxter, L. L., Smith, P. J. 1993. Turbulent dispersion of particles: The STP model. Energ Fuel, 7: 852–859.CrossRefGoogle Scholar
  3. Cui, J., Yuan, K., Sun, Q., Peng, W., Wang, J. 2018. Inlet passageway optimization of immediate heat exchanger in an HTGR. In: Proceedings of the 26th International Conference on Nuclear Engineering, 9: V009T16A056.'CrossRefGoogle Scholar
  4. Dong, M., Han, J., Li, S. F., Pu, H. 2013a. A dynamic model for the normal impact of fly ash particle with a planar surface. Energies, 6: 4288–4307.CrossRefGoogle Scholar
  5. Dong, M., Li, S. F., Xie, J., Han, J. 2013b. Experimental studies on the normal impact of fly ash particles with planar surfaces. Energies, 6: 3245–3262.CrossRefGoogle Scholar
  6. Gosman, A. D., Ioannides, E. 1983. Aspects of computer simulation of liquid-fuelled combustors. J Energy, 7: 482–490.CrossRefGoogle Scholar
  7. Gutti, V. R., Loyalka, S. K. 2009. Thermophoretic deposition in a cylindrical tube: Computations and comparison with experiments. Nucl Technol, 166: 121–133.CrossRefGoogle Scholar
  8. Hertz, H. 1882. Uber die Beruhrung fester elastischer Korper. J reine und angewandte Mathematik, 92: 156–171.zbMATHGoogle Scholar
  9. Hosseini, S. B., Khoshkhoo, R. H., Malabad, S. M. J. 2017. Experimental and numerical investigation on particle deposition in a compact heat exchanger. Appl Therm Eng, 115: 406–417.CrossRefGoogle Scholar
  10. Humrickhouse, P. W. 2011. HTGR dust safety issues and needs for research and development. Technical Report. Idaho National Laboratory, DOI: 10.2172/1023483.CrossRefGoogle Scholar
  11. IAEA. 1997. Fuel performance and fission product behavior in gascooled reactors. IAEA-TECDOC-978.Google Scholar
  12. Jayaraju, S. T., Roelofs, F., Komen, E. M. J., Dehbi, A. 2016. RANS modeling of fluid flow and dust deposition in nuclear pebblebeds. Nucl Eng Des, 308: 222–237.CrossRefGoogle Scholar
  13. Johnson, K. L., Kendall, K., Roberts, A. D. 1971. Surface energy and the contact of elastic solids. Proc R Soc Lond A, 324: 301–313.CrossRefGoogle Scholar
  14. Kawahara, A., Chung, P. M. Y., Kawaji, M. 2002. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiphase Flow, 28: 1411–1435.CrossRefGoogle Scholar
  15. Kazuhiro, S., Takeshi, N., Yoshiaki, M. 1992. Experimental study of dust behavior during depressurization. J Nucl Sci Technol, 29: 1018–1025.CrossRefGoogle Scholar
  16. Kim, O. V., Dunn, P. F. 2007. A microsphere-surface impact model for implementation in computational fluid dynamics. J Aerosol Sci, 38: 532–549.CrossRefGoogle Scholar
  17. Kim, O. V., Dunn, P. F. 2008. Direct visualization and model validation of microsphere impact and surface capture. J Aerosol Sci, 39: 373–375.CrossRefGoogle Scholar
  18. Kissane, M. P. 2009. A review of radionuclide behaviour in the primary system of a very-high-temperature reactor. Nucl Eng Des, 239: 3076–3091.CrossRefGoogle Scholar
  19. Kissane, M. P., Zhang, F., Reeks, M. W. 2012. Dust in HTRs: Its nature and improving prediction of its resuspension. Nucl Eng Des, 251: 301–305.CrossRefGoogle Scholar
  20. Kleinhans, U., Wieland, C., Frandsen, F. J., Spliethoff, H. 2018. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog Energ Combust, 68: 65–168.CrossRefGoogle Scholar
  21. Launder, B. E., Spalding, D. B. 1972. Lectures in Mathematical Models of Turbulence. London: Academic Press.Google Scholar
  22. Li, R. Z., Li, X. T., Fu, J. Y. 2000. The design of intermediate heat exchanger (IHX) for HTR-10. High Technology Letters, 10: 23–25. (in Chinese)Google Scholar
  23. Lind, T., Güntay, S., Dehbi, A., Liao, Y., Rycroft, C. H. 2010. PSI project on HTR dust generation and transport. In: Proceedings of HTR.Google Scholar
  24. Mokgalapa, N. M., Ghosh, T. K., Loyalka, S. K. 2014. Graphite particle adhesion to hastelloy X: Measurements of the adhesive force with an atomic force microscope. Nucl Technol, 186: 45–59.CrossRefGoogle Scholar
  25. Morsi, S. A., Alexander, A. J. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech, 55: 193–208.CrossRefGoogle Scholar
  26. Peng, W., Sun, Q., Xie, F., Jiang, Y. 2018. Simulations of the dust behavior in the sampling and dust filters in the primary loop of HTR-10. Nucl Eng Des, 340: 112–121.CrossRefGoogle Scholar
  27. Peng, W., Zhen, Y. N., Yang, X. Y., Yu, S. Y. 2013. Graphite dust deposition in the HTR-10 steam generator. Particuology, 11: 533–539.CrossRefGoogle Scholar
  28. Sun, Q., Chen, T., Peng, W., Wang, J., Yu, S. Y. 2018. A numerical study of particle deposition in HTGR steam generators. Nucl Eng Des, 332: 70–78.CrossRefGoogle Scholar
  29. US DOE Nuclear Energy Research Advisory Committee. 2002. A technology roadmap for generation IV nuclear energy systems. GIF-002-00.Google Scholar
  30. Wei, M. Z., Zhang, Y. Y., Wu, X. X., Sun, L. B. 2019. A parametric study of graphite dust deposition on high-temperature gas-cooled reactor (HTGR) steam generator tube bundles. Ann Nucl Energy, 123: 135–144.CrossRefGoogle Scholar
  31. Williams, M. M. R., Loyalka, K. S. 1991. Aerosol Science—Theory and Practice: With Special Applications to the Nuclear Industry. Pergamon.Google Scholar
  32. Xie, F., Li, H., Cao, J., Yu, S., Zhang, L., Li, W., Fang, S. 2013. A reform in the helium purification system of the HTR-10: γ dose rate measurement and suggestions for decommissioning. In: Proceedings of the 15th International Conference on Environmental Remediation and Radioactive Waste Management, 2: V002T03A019Google Scholar
  33. Yu, B., Zhang, W. Q., Xu, J. M., Chen, J. 2010. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET. Int J Hydrogen Energ, 35: 2829–2835.CrossRefGoogle Scholar
  34. Zhang, T. Q., Peng, W., Shen, K., Yu, S. Y. 2015. AFM measurements of adhesive forces between carbonaceous particles and the substrates. Nucl Eng Des, 293: 87–96.CrossRefGoogle Scholar
  35. Zhang, Z. Y., Wu, Z. X., Wang, D. Z., Xu, Y. H., Sun, Y. L., Li, F., Dong, Y. J. 2009. Current status and technical description of Chinese 2×250MWth HTR-PM demonstration plant. Nucl Eng Des, 239: 1212–1219.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of EducationTsinghua UniversityBeijingChina
  2. 2.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  3. 3.Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power EngineeringTsinghua UniversityBeijingChina

Personalised recommendations