Abstract
Salinization of soil is a major problem affecting many plant physiological processes. The use of arbuscular mycorrhizal fungi (AMF) plays a key role in improving the growth and the crops yield. The aim of this study was to evaluate the combined effects of salt stress and AMF on agro-physiological and biochemical responses of Stevia rebaudiana Bertoni. The experiment was carried out in a completely randomized design with ten replicates under the green house conditions. Stevia plants were inoculated with AMF consortium (MC) or with Rhizophagus irregularis (Ri) on the presence (80 mM of NaCl) or the absence (0 mM of NaCl) of salt stress. The results showed that plant height, dry biomass of shoots and roots parts, mycorrhizal frequency and intensity, relative water content, chlorophyll fluorescence, stomatal conductance, chlorophyll a, and total chlorophyll were significantly reduced by 29%, 72%, 36%, 84%, 65%, 24%, 17%, 60%, 28.50%, and 40.9% respectively under salt stress. These changes were associated with a significant increase in antioxidant enzymes (activity of polyphenol oxidase, peroxidase, superoxide dismutase, and catalase), electrolyte leakage, lipid peroxidation, and hydrogen peroxide contents. The application of AMF (MC and Ri) improved growth and physiological parameters through rising the activities of antioxidant enzymes and reduction of the oxidative damage caused by the salt stress. The better results were recorded with MC-inoculated plants. These findings suggested that AMF could be an effective strategy to alleviate the adverse effects of salt stress on Stevia rebaudiana.
This is a preview of subscription content, access via your institution.





References
Abd Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22(3):274–283. https://doi.org/10.1016/j.sjbs.2015.03.004
Abid M, Zhang YJ, Li Z, Bai DF, Zhong YP, Fang JB (2020) Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes. Sci Hortic 271:109473. https://doi.org/10.1016/j.scienta.2020.109473
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
Ahmad W, Ayyub CM, Shehzad MA, Ziaf K, Ijaz M, Sher A, Abbas T, Shafi J (2019) Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Hortic Environ Biotechnol 60:853–869. https://doi.org/10.1007/s13580-019-00172-2
Ait-El-Mokhtar M, Baslam M, Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A (2020) Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L) by the application of arbuscular mycorrhizal fungi and/or compost. Front sustain food syst 4:131. https://doi.org/10.3389/fsufs.2020.00131
Ait-El-Mokhtar M, Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A (2019) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438. https://doi.org/10.1016/j.scienta.2019.04.066
Alzahrani SM, Alaraidh IA, Migdadi H, Alghamdi S, Khan MA, Ahmad P (2019) Physiological, biochemical and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pak J Bot 51(3):786–798. https://doi.org/10.30848/PJB2019-3(3)
Amanifar S, Toghranegar Z (2020) The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L and enhancing valerenic acid accumulation under salinity stress. Ind Crops Prod 147:112234. https://doi.org/10.1016/j.indcrop.2020.112234
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris Plant Physiol 24(1):1. https://doi.org/10.1104/pp.24.1.1
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287. https://doi.org/10.1016/0003-2697(71)90370-8
Benhmimou A, Ibriz M, Al Faïz C, Douaik A, Khiraoui A, Amchra FZ, Lage M (2017) Productivity of new sweet plant in Morocco (Stevia rebaudiana Bertoni) under water stress. J Med Plants Stud 5(5):126-131.4
Bhattarai S, Biswas D, Fu YB, Biligetu B (2020) Morphological, physiological, and genetic responses to salt stress in Alfalfa. A Review Agron 10(4):577. https://doi.org/10.3390/agronomy10040577
Borde M, Dudhane M, Kulkarni M, (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. Mycorrhiza-eco-physiology secondary metabolites nanomaterials 71–86. https://doi.org/10.1007/978-3-319-57849-1_5.
Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci 8:1739. https://doi.org/10.3389/fpls.2017.01739
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017
Duc NH, Vo AT, Haddidi I, Daood H, Posta K (2021) Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L) and induce major changes in polyphenol profiles under salt stresses. Front Plant Sci 11:612299. https://doi.org/10.3389/fpls.2020.612299
Ebrahim MK, Saleem AR (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. Journal of Taibah University for Science 11(6):850–860. https://doi.org/10.1016/j.jtusci.2017.02.002
Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L). Saudi J Biol Sci 24(1):170–179. https://doi.org/10.1016/j.sjbs.2016.02.010
Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470. https://doi.org/10.3389/fpls.2019.00470
Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208. https://doi.org/10.1007/s00572-013-0529-4
Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70. https://doi.org/10.1016/j.ecoenv.2016.11.029
Fathi A, Oveysi M, Nasri M, Tohidi H, Kasraei P (2020) Physiological responses of peppermint (Mentha piperita L) to plant growth regulators and salinity stress. Iran J Plant Physiol 11(1):3499–3508. https://doi.org/10.22034/ijpp.2020.677291
Fattahi M, Mohammadkhani A, Shiran B, Baninasab B, Ravash R, Gogorcena Y (2021) Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp) rootstocks submitted to drought and salinity stress. Sci Hortic 281:109937. https://doi.org/10.1016/j.scienta.2021.109937
Forouzi A, Ghasemnezhad A, Nasrabad RG (2020) Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. S Afr J Bot 134:109–118. https://doi.org/10.1016/j.sajb.2020.04.001
Gerami M, Majidian P, Ghorbanpour A, Alipour Z (2020) Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol Mol Biol Plants 26(5):965–974. https://doi.org/10.1007/s12298-020-00788-0
Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gopalakrishnan T, Kumar L (2020) Potential impacts of sea-level rise upon the Jaffna Peninsula, Sri Lanka: how climate change can adversely affect the coastal zone. J Coast Res 36(5):951–960. https://doi.org/10.2112/JCOASTRES-D-19-00155.1
Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell Environ 21(6):535–553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
Hashem A, AbdAllah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del) by Trichoderma hamatum (Bonord) Bainier. J Plant Interact 9(1):857–868. https://doi.org/10.1080/17429145.2014.983568
Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009
He Z, He C, Yan Y, Zhang Z, Wang H, Li H, Tang H (2011) Regulative effect of arbuscular mycorrhizal fungi on water absorption and expression of aquaporin genes in tomato under salt stress. Acta Horticulturae Sinica 38(2):273–280
Hniličková H, Hnilička F, Martinkova J, Kraus K (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil and Environment 63(8):362–367. https://doi.org/10.17221/398/2017-PSE
Hori K, Wada A, Shibuta T (1997) Changes in phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura fuslformis (Homoptera: Eriosomatidae). Appl Entomol Zool 32(2):365–371. https://doi.org/10.1303/aez.32.365
Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768
Janah I, Elhasnaoui A, Issa Ali O, Lamnai K, Aissam S, Loutfi K (2021) Physio_chemical responses of Stevia rebaudiana Bertoni subjected to sodium chloride (NaCl) salinity and exogenous salicylic acid application. Gesunde Pflanzen 1-12 doi : https://doi.org/10.1007/s10343-021-00570-6Janah I, Elhasnaoui A, Issa Ali O, Lamnai K, Aissam S, Loutfi K (2021) Physio_chemical responses of Stevia rebaudiana Bertoni subjected to sodium chloride (NaCl) salinity and exogenous salicylic acid application. Gesunde Pflanzen 1-12 doi : https://doi.org/10.1007/s10343-021-00570-6
Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic (amsterdam) 116:227–239. https://doi.org/10.1016/j.scienta.2008.02.002
Kurunc A, Aslan GE, Karaca C, Tezcan A, Turgut K, Karhan M, Kaplan B (2020) Effects of salt source and irrigation water salinity on growth, yield and quality parameters of Stevia rebaudiana Bertoni. Sci Hortic 270:109458. https://doi.org/10.1016/j.scienta.2020.109458
Laouane RB, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz 71(2):135–146. https://doi.org/10.1007/s10343-019-00461-x
Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233. https://doi.org/10.1016/j.scienta.2010.09.020
Latef AAHA, Hashem A, Rasool S, AbdAllah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum AN, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants. A review J Plant Biol 59(5):407–426. https://doi.org/10.1007/s12374-016-0237-7
Latef AAHA, Tahjib-Ul-Arif M, Rhaman MS (2021) Exogenous auxin-mediated salt stress alleviation in faba bean (Vicia faba L). Agronomy 11(3):547. https://doi.org/10.3390/agronomy11030547
Liang SC, Jiang Y, Li MB, Zhu WX, Xu N, Zhang HH (2019) Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J Plant Interac 14(1):482–491. https://doi.org/10.1080/17429145.2019.1662101
Liao L, Dong T, Qiu X, Rong Y, Wang Z, Zhu J (2019) Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS ONE 14:e0223356. https://doi.org/10.1371/journal.pone.0223356
Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann Bot 78(3):389–398. https://doi.org/10.1006/anbo.1996.0134
Mbadi SH, Alipour ZT, Asghari H, Kashefi B (2015) Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis). Journal of Biodiversity and Environmental Sciences (JBES) 6(4):215–219
Meddich A, Ait El Mokhtar M, Bourzik W, Mitsui T, Baslam M, Hafidi M (2018) Optimizing growth and tolerance of date palm (Phoenix dactylifera L.) to drought, salinity, and vascular fusarium-induced wilt (Fusarium oxysporum) by application of arbuscular mycorrhizal fungi (AMF). Root Biology 52:239–250. https://doi.org/10.1007/978-3-319-75910-4_9
Motaleb NA, Abd Elhady SA, Ghoname AA (2020) AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanz 72(1):29–39. https://doi.org/10.1007/s10343-019-00480-8
Oktay M, Küfreviolu I, Kocaçalişkan I, Şaklrolu H (1995) Polyphenoloxidase from Amasya apple. J Food Sci 60(3):494–496. https://doi.org/10.1111/j.1365-2621.1995.tb09810.x
Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57(1–2):177–186. https://doi.org/10.1016/j.envexpbot.2005.05.011
Pankaj U, Verma RS, Yadav A, Verma RK (2019) Effect of arbuscular mycorrhizae species on essential oil yield and chemical composition of palmarosa (Cymbopogon martinii) varieties grown under salinity stress soil. J Essent Oil Res 31(2):145–153. https://doi.org/10.1080/10412905.2018.1512533
Parihar M, Rakshit A, Rana K, Tiwari G, Jatav SS (2020) The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of pea (Pisum Sativum L). Communications in Soil Science and Plant Analysis 51(11):1545–1559. https://doi.org/10.1080/00103624.2020.1784917
Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161. https://doi.org/10.1016/S0007-1536(70)80110-3
Polcyn W, Paluch-Lubawa E, Lehmann T, Mikuła R (2019) Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drought effects but does not improve fodder yield and quality. Front Plant Sci 10:496. https://doi.org/10.3389/fpls.2019.00496
Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83. https://doi.org/10.1016/j.jplph.2015.07.006
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295. https://doi.org/10.1111/1477-8947.12054
Rady MM, Kuşvuran A, Alharby HF, Alzahrani Y, Kuşvuran S (2019) Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J Plant Growth Regul 38:449–462. https://doi.org/10.1007/s00344-018-9860-5
Rao KM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128
Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ (2018) Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol 220(4):1322–1336. https://doi.org/10.1111/nph.15295
Santander C, Sanhueza M, Olave J, Borie F, Valentine A, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19:321–331. https://doi.org/10.1007/s42729-019-00032-z
Shahvali R, Shiran B, Ravash R, Fallahi H, Đeri BB (2020) Effect of symbiosis with arbuscular mycorrhizal fungi on salt stress tolerance in GF677 (peach× almond) rootstock. Sci Hortic 272:109535. https://doi.org/10.1016/j.scienta.2020.109535
Shahverdi MA, Omidi H, Jalal Tabatabaei S (2017) Stevia (Stevia rebaudina Bertoni) responses to NaCl stress: growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J Saudi Soc Agric Sci 18(4):355–360. https://doi.org/10.1016/j.jssas.2017.12.001
Shahverdi MA, Omidi H, Tabatabaei SJ (2018) Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Ind Crops Prod 125:408–415. https://doi.org/10.1016/j.indcrop.2018.09.029
Singh A (2015) Soil salinization and waterlogging: a threat to environment and agricultural sustainability. Ecol Indic 57:128–130. https://doi.org/10.1016/j.ecolind.2015.04.027
Taffouo VD, Nouck AE, Nyemene KP, Tonfack B, Meguekam TL, Youmbi E (2017) Effects of salt stress on plant growth nutrient partitioning chlorophyll content leaf relative water content accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L) cultivars. Not Bot Horti Agrobot Cluj Napoca 45(2):481–490. https://doi.org/10.15835/nbha45210928
Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. Physiological and genetical aspects of mycorrhizae: proceedings of the 1st european symposium on mycorrhizae. Dijon 1–5 July 1985 (pp. 217–221).
Turner NC, Begg JE (1981) Plant-water relations and adaptation to stress. Plant Soil 58(1–3):97–131. https://doi.org/10.1007/BF02180051
Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
Wang Y, Wang J, Yan X, Sun S, Lin J (2019) The effect of arbuscular mycorrhizal fungi on photosystem II of the host plant under salt stress: a meta-analysis. Agronomy 9(12):806. https://doi.org/10.3390/agronomy9120806
Yavaş İ, Yılmaz FM, Ünay A (2019) Promoting effect of foliar silicon on steviol glycoside contents of Stevia rebaudiana Bertoni under salt stress. Int j second metab 6(3):263–269. https://doi.org/10.21448/ijsm.547380
Ye L, Zhao X, Bao E, Cao K, Zou Z (2019) Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses. Front Plant Sci 10:863. https://doi.org/10.3389/fpls.2019.00863
Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crops Prod 117:13–19. https://doi.org/10.1016/j.indcrop.2018.02.087
Zhu X, Cao Q, Sun L, Yang X, Yang W, Zhang H (2018) Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl Stress. Front Plant Sci 9:1363. https://doi.org/10.3389/fpls.2018.01363
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Janah, I., Meddich, A., Elhasnaoui, A. et al. Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses. J Soil Sci Plant Nutr 23, 152–162 (2023). https://doi.org/10.1007/s42729-021-00690-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42729-021-00690-y