Phosphorus Use Efficiency in Permanent Pastures in Andisols

Abstract

The phosphorus (P) availability in volcanic soils is a main limitation for permanent pasture growth. Phosphorus use efficiency (PUE) must be improved to increase forage production with minimum impact on the environment. The aim of the present study was to assess at field conditions the PUE, P uptake efficiency (PUPE), P utilization efficiency (PUTE), and the P nutrition index (PNI) on permanent pastures grown in different environments under different P rates and P sources. Three field experiments were conducted in Southern Chile. Treatments resulted from factorial combination of (i) two P sources (phosphate rock and triple superphosphate) and (ii) different P rates. High variations in PUPE (0.004–0.108 kg P uptake kg−1 P available), PUTE (189–756 kg DM kg−1 P uptake), PUE (1.3–42.7 kg DM kg−1 P available), and PNI (0.32–1.33) were observed across experiments, P rates, and harvest dates. PUE was significantly related to PUPE. PUTE was related to PNI through a negative power function. Therefore, higher or lower PUTEs will be the result of pastures grown under P deficiency and luxury consumption conditions, respectively. A reference PUTE ranging from 212 to 321 kg DM kg−1 P uptake is proposed for pastures grown under optimal P nutritional status. The present study is the first proposing the PNI as a valuable tool to assess not only the P nutrition status, but also the PUTE in response to management factors such as P fertilization and harvest dates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbasi MK, Musa N, Manzoor M (2015) Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 12:4607–4619. https://doi.org/10.5194/bg-12-4607-2015

    Article  Google Scholar 

  2. Acuña H, Inostroza L (2013) Phosphorus efficiency of naturalized Chilean white clover in a grazed field trial. Grass Forage Sci 68:125–137

    Article  Google Scholar 

  3. Alloush GA (2003) Dissolution and effectiveness of phosphate rock in acidic soil amended with cattle manure. Plant Soil 251:37–46. https://doi.org/10.1023/A:1022987915057

    CAS  Article  Google Scholar 

  4. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    CAS  Article  PubMed  Google Scholar 

  5. Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nut 12:547–561

    Google Scholar 

  6. Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37(5):787–830. https://doi.org/10.1071/SR98115

    CAS  Article  Google Scholar 

  7. Barrow NJ (2015) Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant Soil 397:401–409. https://doi.org/10.1007/s11104-015-2514-5

    CAS  Article  Google Scholar 

  8. Barrow NJ, Barman P (2018) Three residual benefits of applying phosphate fertilizer. Soil Sci Soc Am J 82(5):1168–1176. https://doi.org/10.2136/sssaj2018.03.0115

    CAS  Article  Google Scholar 

  9. Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146:163–168. https://doi.org/10.1007/BF00012009

    CAS  Article  Google Scholar 

  10. Bélanger G, Ziadi N (2008) Phosphorus and nitrogen relationships during spring growth of an aging Timothy Sward. Agron J 100(6):1757–1762. https://doi.org/10.2134/agronj2008.0132

    CAS  Article  Google Scholar 

  11. Besoaín E, Sadzawka MA (1999) 2.1 Fenómenos de retención de fósforo en los suelos volcánicos y sus consecuencias. In: Besoaín E, Rojas C, Montenegro A (eds). Las rocas fosfóricas y sus posibilidades de uso agrícola en Chile. Colección Libros INIA N° 2. Santiago, pp 23–36

  12. Bolan NS, White RE, Hedley MJ (1990) A review of the use of phosphate rocks as fertilizers for direct application in Australia and New Zealand. Aust J Exp Agric 30(2):297–313. https://doi.org/10.1071/EA9900297

    CAS  Article  Google Scholar 

  13. Bolan NS, Naidu R, Syers JK, Tillman RW (1999) Surface charge and solute interactions in soils. Adv Agron 67:87–140. https://doi.org/10.1016/S0065-2113(08)60514-3

    CAS  Article  Google Scholar 

  14. Bolland MDA (1993) Summary of research on soil testing for rock phosphate fertilizers in Western Australia. Fert Res 35:83–91. https://doi.org/10.1007/BF00750222

    CAS  Article  Google Scholar 

  15. Bolland MDA, Siddique K, Loss S, Baker M (1999) Comparing responses of grain legumes, wheat and canola to applications of superphosphate. Nutr Cycl Agroecosys 53:157–175. https://doi.org/10.1023/A:1009798506480

    Article  Google Scholar 

  16. Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78. https://doi.org/10.4067/S0717-66432003000100011

    Article  Google Scholar 

  17. Burkitt LL, Moody PW, Gourley CJ, Hannah MC (2002) A simple phosphorus buffering index for Australian soils. Aust J Soil Res 40:497–513. https://doi.org/10.1071/SR01050

    CAS  Article  Google Scholar 

  18. Cabeza RA, Steingrobe B, Claassen N (2019) Phosphorus fractionation in soils fertilized with recycled phosphorus products. J Soil Sci Plant Nut 19(3):611–619. https://doi.org/10.1007/s42729-019-00061-8

    CAS  Article  Google Scholar 

  19. Caradus JR, Mackay AD, Wewala S, Dunlop J, Hart A, Van Den Bosch J, Lambert MG, Hay MJM (1992) Inheritance of phosphate response in white clover (Trifolium repens L.). Plant Soil 146:199–208. https://doi.org/10.1007/BF00012013

    CAS  Article  Google Scholar 

  20. Cayley JWD, Kearney GA, Saul GR, Lescun CL (1999) The long-term influence of superphosphate and stocking rate on the production of spring-lambing Merino sheep in the high rainfall zone of southern Australia. Aust J Soil Res 50(7):1179–1190. https://doi.org/10.1071/AR98198

    Article  Google Scholar 

  21. Chapin F, Follet J, O’Connor K (1982) Growth, phosphate absorption and phosphorus chemical fractions in two Chionochloa species. J Ecol 70:305–321. https://doi.org/10.2307/2259881

    CAS  Article  Google Scholar 

  22. Charlton JFL, Stewart AV (1999) Pasture species and cultivars used in New Zealand—a list. Proc New Zealand Grassland Assoc 61:147–166

    Article  Google Scholar 

  23. Chien SH (2003) Factors affecting the agronomic effectiveness of phosphate rock: a general review. In: Rajan SSS, Chien SH (eds) Direct application of phosphate rock and related appropriate technology – latest development and practical experiences. Special Publications IFDC-SP-37, IFDC, Muscle Shoals, Alabama, pp 50–77

  24. Chien SH, Prochnow LI, Tu S, Snyder CS (2011) Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosys 89(2):229–255. https://doi.org/10.1007/s10705-010-9390-4

    Article  Google Scholar 

  25. Cordell D, Drangert JO, White S (2009) The story of phosphorus: Global food security and food for thought. Glob Environ Change 19(2):292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  26. Darch T, Blackwell MSA, Hawkins JMB, Haygarth PM, Chadwick D (2014) A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: implications for water quality. Crit Rev Environ Sci Technol 44(19):2172–2202. https://doi.org/10.1080/10643389.2013.790752

    CAS  Article  Google Scholar 

  27. Dietz KJ, Foyer C (1986) The relationship between phosphate status and photosynthesis in leaves. Planta 167:369–375. https://doi.org/10.1007/BF00391342

    Article  Google Scholar 

  28. Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31. https://doi.org/10.1038/478029a

    CAS  Article  PubMed  Google Scholar 

  29. Engelstad OP, Terman GL (1980) Agronomic effectiveness of phosphate fertilisers. In: Khasawneh FE, Sample EC, Kamparth J (eds) The role of phosphorus in agriculture. Madison: American Society of Agronomy, pp 311–332

    Google Scholar 

  30. Escudey M, Galindo G, Förster JE, Briceño M, Diaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Commun Soil Sci Plant Anal 32:601–616. https://doi.org/10.1081/CSS-100103895

    CAS  Article  Google Scholar 

  31. Föhse D, Claassen N, Jungk A (1988) Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil 110:101–109. https://doi.org/10.1007/BF02143545

    Article  Google Scholar 

  32. Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230. https://doi.org/10.1104/pp.89.1.225

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    CAS  Article  Google Scholar 

  34. Gahoonia TS, Nielsen NE, Lyshede OB (1999) Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil 211(2):269–281. http://www.jstor.org/stable/42949664

  35. Gastal F, Lemaire G, Durand JL, Louarn G (2015) Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras VO, Calderini DF (eds). Crop physiology: applications for genetic improvement and agronomy (2nd ed). San Diego: Academic Press, pp 161–206. https://doi.org/10.1016/B978-0-12-417104-6.00008-X

  36. Gburek WJ, Barberis E, Haygarth PM, Kronvang B, Stamm C (2005) Phosphorus mobility in the landscape. In: Sims JT, Sharpley AN (Eds.). Phosphorus: agriculture and the Environment, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp. 941–979. https://doi.org/10.2134/agronmonogr46.c29

  37. Giles CD, Brown LK, Adu MO, Mezeli MM, Sandral GA, Simpson RJ, Wendler R, Shand CA, Menezes-Blackburn D, Darch T, Stutter MI, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Cooper P, Haygarth PM, George TS (2017) Response-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient source. Plant Sci 255:12–28. https://doi.org/10.1016/j.plantsci.2016.11.002

    CAS  Article  PubMed  Google Scholar 

  38. Gilliland TJ, Barrett PD, Mann RL, Agnew RE, Fearon AM (2002) Canopy morphology and nutritional quality traits as potential grazing value indicators for Lolium perenne varieties. J Agric Sci 139:257–273. https://doi.org/10.1017/S0021859602002575

    Article  Google Scholar 

  39. Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66(4):425–436. https://doi.org/10.1093/oxfordjournals.aob.a088044

    CAS  Article  Google Scholar 

  40. Haling RE, Yang Z, Shadwell N, Culvenor RA, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2016a) Growth and root dry matter allocation by pasture legumes and a grass with contrasting external critical phosphorus requirements. Plant Soil 407:67–79. https://doi.org/10.1007/s11104-016-2808-2

    CAS  Article  Google Scholar 

  41. Haling RE, Yang Z, Shadwell N, Culvenor RA, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2016b) Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Func Plant Biol 43(9):815–826. https://doi.org/10.1071/FP16037

    CAS  Article  Google Scholar 

  42. Haverkort AJ, Sandaña P, Kalazich J (2014) Yield gaps and ecological footprints of potato production systems in Chile. Potato Res 57:13–31. https://doi.org/10.1007/s11540-014-9250-8

    Article  Google Scholar 

  43. Haygarth PM, Chapman PJ, Jarvis SC, Smith RV (1998) Phosphorus budgets for two contrasting farming systems in the UK. Soil Use Manage 14:160–167. https://doi.org/10.1111/j.1475-2743.1998.tb00635.x

    Article  Google Scholar 

  44. Haygarth PM, Bardgett RD, Condron LM (2013) Phosphorus and nitrogen cycles and their management. In: Gregory PJ, Nortcliff S (eds). Russell's soil conditions and plant growth, 12th edn. Hoboken: Wiley-Blackwell, pp 132–158

  45. Hirzel J (2014) Diagnóstico nutricional y principios de fertilización en frutales y vides. Colección de Libros INIA Nº 31. ISBN 978–956–7016–47–1. Chillán, p 322

  46. Hisinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. https://doi.org/10.1007/s11104-008-9885-9

    CAS  Article  Google Scholar 

  47. Hutchings M, de Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Article  Google Scholar 

  48. Johnston E, Poulton P, Fixen P, Curtin D (2014) Chapter five - phosphorus: its efficient use in agriculture. Editor(s): Donald L. Sparks Adv Agron 123:177–228. https://doi.org/10.1016/B978-0-12-420225-2.00005-4

    CAS  Article  Google Scholar 

  49. Jungk A (1991) Dynamics of nutrient movement at the soil-root interface. In: Waisel J, Eshel A, Kafkafi U (eds.). Plant Roots. The Hidden Half, Marcel Dekker, pp. 455–481

  50. Jungk A, Claassen N (1989) Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Z Pflanz Bodenkunde 152:151–157. https://doi.org/10.1002/jpln.19891520204

    CAS  Article  Google Scholar 

  51. Khan A, Lu G, Zhang H, Wang R, Lv F, Xu J, Yang X, Zhang S (2019) Land use changes impact distribution of phosphorus in deep soil profile. J Soil Sci Plant Nut 19(3):565–573. https://doi.org/10.1007/s42729-019-00055-6

    CAS  Article  Google Scholar 

  52. Krey T, Vassilev N, Baum C, Eichler-Löbermann B (2013) Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130. https://doi.org/10.1016/j.ejsobi.2012.12.007

    CAS  Article  Google Scholar 

  53. Lambers H, Chapin F, Pons T (2008) Plant physiological ecology, 2nd edn. New York: Springer, p 540

    Book  Google Scholar 

  54. Lee J, Matthew C, Thom E, Chapman D (2012) Perennial ryegrass breeding in New Zealand: a dairy industry perspective. Crop Pasture Sci 63(2):107–127. https://doi.org/10.1071/CP11282

    Article  Google Scholar 

  55. Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G. (ed). Diagnosis of the nitrogen status in crops. Berlin: Springer Berlin Heidelberg, pp 3–43

  56. Lemaire G, Gastal F (2018) Crop responses to nitrogen. In: Meyers R (ed). Encyclopedia of sustainability science and technology. New York: Springer, pp 1–27. https://doi.org/10.1007/978-1-4939-2493-6_385-4

  57. Lemaire G, Ciampitti I (2020) Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9(10):1–19. https://doi.org/10.3390/plants9101309

    CAS  Article  Google Scholar 

  58. Lynch J (2007) Roots of the second green revolution. Aust J Bot 55(5):493–512. https://doi.org/10.1071/BT06118

    Article  Google Scholar 

  59. Macpherson S, Martin M (1994) Effects of phosphate additions to soil on lean and phosphate concentrations of Holcus lanatus grown on lead amended soil. Chemosphere 29(12):2571–2581. https://doi.org/10.1016/0045-6535(94)90058-2

    CAS  Article  Google Scholar 

  60. Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Fischer RA, Rajaram S, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in México. Eur J Agron 14(4):261–274. https://doi.org/10.1016/S1161-0301(00)00099-X

    CAS  Article  Google Scholar 

  61. McCain S, Davies M (1983) Effects of pretreatment with phosphate in natural populations of Agrostis capillaries L. New Phytol 94:367–379. https://doi.org/10.1111/j.1469-8137.1983.tb03451.x

    Article  Google Scholar 

  62. McLaren TI, McBeath TM, Simpson RJ, Richardson AR, Stefanski A, Guppy CN, Smernik RJ, Rivers C, Johnston C, McLaughlin MJ (2017) Direct recovery of 33P-labelled fertiliser phosphorus in subterranean clover (Trifolium subterraneum) pastures under field conditions – the role of agronomic management. Agric Ecosyst Environ 246:144–156. https://doi.org/10.1016/j.agee.2017.05.029

    CAS  Article  Google Scholar 

  63. McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant Soil 349:69–87. https://doi.org/10.1007/s11104-011-0907-7

    CAS  Article  Google Scholar 

  64. Meharg A, Bailey J, Breadmore K, Macnair M (1994) Biomass allocation, phosphorus nutrition and vesicular – arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil 160:11–20. https://doi.org/10.1007/BF00150341

    CAS  Article  Google Scholar 

  65. Milroy SP, Wang P, Sadras VO (2019) Defining upper limits of nitrogen uptake and nitrogen use efficiency of potato in response to crop N supply. Field Crop Res 239:38–46. https://doi.org/10.1016/j.fcr.2019.05.011

    Article  Google Scholar 

  66. Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74(3):562–564. https://doi.org/10.2134/agronj1982.00021962007400030037x

    Article  Google Scholar 

  67. Ortiz-Monasterio J, Manske G, van Ginkel M (2001) Nitrogen and phosphorus use efficiency. In: Reynolds M, Ortiz-Monasterio J, McNab A (eds). Application of physiology in wheat breeding. Mexico: CIMMYT, pp 200–207

  68. Osman AE, Cocks PS, Russi L, Pagnotta MA (1991) Response of Mediterranean grassland to phosphate and stocking rates: biomass production and botanical composition. J Agric Sci 116(1):37–46. https://doi.org/10.1017/S0021859600076127

    Article  Google Scholar 

  69. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54. https://doi.org/10.1016/j.apsoil.2014.09.012

    Article  Google Scholar 

  70. Popay AJ, Hume DE (2011) Endophytes improve ryegrass persistence by controlling insects. In ‘Pasture Persistence Symposium’. Grassland Research and Practice Series No. 15. (Ed. CF Mercer) pp. 149–156. (Hamilton: New Zealand Grassland Association)

  71. Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res 117(2–3):169–176. https://doi.org/10.1016/j.fcr.2010.03.001

    Article  Google Scholar 

  72. Rao IM, Terry N (1989) Leaf phosphorus status, photosynthesis, and carbon partitioning in sugar beet (IV. Changes with time following increased supply of phosphate to low-phosphate plants). Plant Physiol 90:814–819. https://doi.org/10.1104/pp.90.3.81

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Rapson G, Wilson J (1992) Genecology of Agrostis capillaries L. (Poaceae) an invader into New Zealand. New Zeal J Bot 30:1–11. https://doi.org/10.1080/0028825X.1992.10412880

    Article  Google Scholar 

  74. R Core Team (2018) R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing. Available via DIALOG https://www.R-project.org/

  75. Redel Y, Cartes P, Demanet R, Velásquez G, Poblete-Grant P, Bol R, Mora ML (2016) Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. J Soil Sci Plant Nutr 16:490–506. https://doi.org/10.4067/S0718-95162016005000041

    CAS  Article  Google Scholar 

  76. Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recy 93:32–49. https://doi.org/10.1016/j.resconrec.2014.09.006

    Article  Google Scholar 

  77. Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. https://doi.org/10.1007/s11104-011-0950-4

    CAS  Article  Google Scholar 

  78. Rodríguez D, Keltjens WG, Gourdriaan J (1998a) Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant Soil 200:227–240. https://doi.org/10.1023/A:1004310217694

    Article  Google Scholar 

  79. Rodríguez D, Pomar MC, Gourdriaan J (1998b) Leaf primordia initiation, leaf emergence and tillering in wheat (Triticum aestivum L.) growth under low phosphorus conditions. Plant Soil 202(1):149–157. https://doi.org/10.1023/A:1004352820444

    Article  Google Scholar 

  80. Rodríguez D, Andrade F, Goudriaan J (2000) Does assimilate supply limit leaf expansion in wheat grown in the field under low phosphorus availability? Field Crops Res 67:227–238. https://doi.org/10.1016/S0378-4290(00)00098-8

    Article  Google Scholar 

  81. R Studio Team (2015) R Studio: integrated development for R. Boston: R Studio, Inc. Available via DIALOG http://www.rstudio.com/

  82. Sadzawka A, Carrasco MA, Demanet R, Flores H, Grez R, Mora ML, Neaman A (2007) Métodos de análisis de tejidos vegetales. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación La Platina. Serie Actas Nº 40. 139p

  83. Sandaña P (2016) Phosphorus uptake and utilization efficiency in response to potato genotype and phosphorus availability. Eur J Agron 76:95–106. https://doi.org/10.1016/j.eja.2016.02.003

    CAS  Article  Google Scholar 

  84. Sandaña P, Pinochet D (2014) Grain yield and phosphorus use efficiency of wheat and pea in a high yielding environment. J Soil Sci Plant Nut 14(4):973–986. https://doi.org/10.4067/S0718-95162014005000076

    Article  Google Scholar 

  85. Sandaña P, Orena S, Rojas J, Kalazich J, Uribe M (2018) Critical value of soil Olsen-P for potato production systems in volcanic soils. J Soil Sci Plant Nut 18(4):965–976. https://doi.org/10.4067/S0718-95162018005002801

    Article  Google Scholar 

  86. Sandaña P, Lobos I, Pavez P, Moscoso C (2019) Validation of a critical nitrogen dilution curve for hybrid ryegrasses. Grass Forage Sci 73:370–380. https://doi.org/10.1111/gfs.12405

    Article  Google Scholar 

  87. Sandaña P, Lobos I, Pavez P, Moscoso C (2021) Nitrogen nutrition index and forage yield explain nitrogen utilization efficiency in hybrid ryegrasses under different nitrogen availabilities. Field Crops Res 265:108101. https://doi.org/10.1016/j.fcr.2021.108101

    Article  Google Scholar 

  88. Sandral GA, Price A, Hildebrand SM, Fuller CG, Haling RE, Stefanski A, Yang Z, Culvenor RA, Ryan MH, Kidd DR, Diffey S, Lambers H, Simpson RJ (2019) Field benchmarking of the critical external phosphorus requirements of pasture legumes for southern Australia Crop and Pasture. Science 70(12):1080–1096. https://doi.org/10.1071/CP19014

    CAS  Article  Google Scholar 

  89. Siebald E, Matzner M, Becker F (1983) Mejoramiento de praderas naturales del llano central de la Décima Región. Agric Technol 43(4):313–321. https://biblioteca.inia.cl/handle/123456789/41611

  90. Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120. https://doi.org/10.1007/s11104-011-0880-1

    CAS  Article  Google Scholar 

  91. Soratto RP, Pilon C, Fernándes AM, Moreno LA (2015) Phosphorus uptake, use efficiency, and response of potato cultivars to phosphorus levels. Potato Res 58:121–134. https://doi.org/10.1007/s11540-015-9290-8

    CAS  Article  Google Scholar 

  92. Stewart WM, Dibb DW, Johnston AE, Smyth TJ (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97(1):1–6. https://doi.org/10.2134/agronj2005.0001

    Article  Google Scholar 

  93. Tian J, Boitt G, Black A, Wakelin S, Condron L, Chen L (2017) Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. Agr Ecosyst Environ 239:228–235. https://doi.org/10.1016/j.agee.2017.01.022

    CAS  Article  Google Scholar 

  94. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. https://doi.org/10.1126/science.1057544

    CAS  Article  PubMed  Google Scholar 

  95. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Teuber N, Romero O (2004) Manejo de praderas. In: Manual de producción de bovinos de carne para la VIII, IX y X Regiones. In: Rojas C (ed) INIA - FIA. Temuco, pp 33-50

  97. Tunney H, Kirwan L, Fu W, Culleton N, Black A (2010) Long-term phosphorus grassland experiment for beef production-impacts on soil phosphorus levels and liveweight gains. Soil Use Manage 26(3):237–244. https://doi.org/10.1111/j.1475-2743.2010.00292.x

    Article  Google Scholar 

  98. Ulrich A (1952) Physiological basis for assessing the nutritional requirements of plants. Ann Rev Plant Physiol 3:207–228. https://doi.org/10.1146/annurev.pp.03.060152.001231

    Article  Google Scholar 

  99. USGS (2020) Mineral commodity summaries. In: National minerals information center. Available via DIALOG.https://www.usgs.gov/centers/nmic

  100. Usuda H, Shimogawara K (1992) Phosphate deficiency in maize. III Changes in enzyme activities during the course of phosphate deprivation. Plant Physiol 99(4):1680–1685. https://www.jstor.org/stable/4274565

  101. Valle S, Pinochet D, Calderini D (2011) Uptake and use efficiency of N, P, K, Ca and Al by Al-sensitive and Al-tolerant cultivars of wheat under a wide range of soil Al concentrations. Field Crops Res 121(3):392–400. https://doi.org/10.1016/j.fcr.2011.01.006

    Article  Google Scholar 

  102. van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207:1–22. https://doi.org/10.1007/s10681-015-1572-3

    Article  Google Scholar 

  103. van Duren I, van Andel J (1997) Nutrient deficiency in undisturbed, drained and rewetted peat soils tested with Holcus lanatus. Acta Bot Neerl 46(4):377–386. https://doi.org/10.1111/plb.1997.46.4.377

    Article  Google Scholar 

  104. Vásconez G, Pinochet D (2018) Residual value of the phosphate added to Ecuadorian and Chilean soils with different phosphorus retention capacity. J Soil Sci Plant Nut 18(1):60–72. https://doi.org/10.4067/S0718-95162018005000301

    Article  Google Scholar 

  105. Velásquez G, Ngo PT, Rumpel C, Calabi-Floody M, Redel Y, Turner BL, Condron LM, Mora ML (2016) Chemical nature of residual phosphorus in Andisols. Geoderma 271:27–31. https://doi.org/10.1016/j.geoderma.2016.01.027

    CAS  Article  Google Scholar 

  106. Vistoso E, Bolan NS, Theng BKG, Mora ML (2009) Kinetics of molybdate and phosphate sorption by some Chilean Andisols. J Soil Sci Plant Nut 9(1):55–68. https://doi.org/10.4067/S0718-27912009000100005

    Article  Google Scholar 

  107. Vistoso E, Theng BKG, Bolan NS, Parfitt R, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nut 12(1):59–72. https://doi.org/10.4067/S0718-95162012000100006

    Article  Google Scholar 

  108. Vistoso E, Iraira S, Sandaña P (2019) Effects of phosphorus fertilizer solubility on pastures yield and quality in Andisols. J Soil Sci Plant Nut 20:637–647. https://doi.org/10.1007/s42729-019-00152-6

    CAS  Article  Google Scholar 

  109. Waddell HA, Simpson RJ, Henderson B, Ryan MH, Lambers H, Garden DL, Richardson AE (2016) Differential growth response of Rytidosperma species (wallaby grass) to phosphorus application and its implications for grassland management. Grass Forage Sci 71(2):245–258. https://doi.org/10.1111/gfs.12170

    Article  Google Scholar 

  110. Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179(4):302–306. https://doi.org/10.1016/j.plantsci.2010.06.007

    CAS  Article  Google Scholar 

  111. Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscules development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497. https://doi.org/10.1105/tpc.110.074955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Gobierno Regional and Secretaría Regional Ministerial de Agricultura de la Región de Los Lagos for financial support and Instituto de Investigaciones Agropecuarias (INIA) for supporting this research. We also thank Annette Fahrenkrog Ph.D. and Enzo Oyarce engineering student for help with the English language.

Funding

This study was funded by the Convenio de Cooperación “Desarrollo del Programa de Mejoramiento de la Capacidad Productiva de las Praderas” (BIP 30125789–0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erika Vistoso.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vistoso, E., Iraira, S. & Sandaña, P. Phosphorus Use Efficiency in Permanent Pastures in Andisols. J Soil Sci Plant Nutr (2021). https://doi.org/10.1007/s42729-021-00526-9

Download citation

Keywords

  • Phosphorus uptake
  • Phosphorus uptake efficiency
  • Phosphorus utilization efficiency
  • Phosphorus fertilization
  • Phosphorus nutrition index