Investigating Cobalt in Soil-plant-animal-human system: Dynamics, Impact and Management

Abstract

A great paucity of information exists regarding cobalt (Co), a beneficial plant nutrient and an essential trace element for human. Different soil fractions namely soluble and exchangeable pool, organically bound pool, oxide bound pools etc. dynamically regulate phytoavailability of Co. The uptake and translocation of Co is mediated by highly specialized transporter systems. Co regulates various developmental and metabolic aspects of plants namely biological nitrogen fixation, stress management and enzyme activation. In animals including human beings, Co governs the biosynthesis of vitamin B12. Nevertheless, toxic levels of Co often invite detrimental physiological behaviours in biological systems like structural aberration, reduced photosynthetic activity, interference with chlorophyll synthesis and induction of oxidative stress. Supplementing Co in deficient situation in the form of fertilization is required to augment food and nutritional security. Obnoxious occurrence of Co is alleviated using physicochemical techniques, bioremediation and phytoremediation to prevent dietary exposure. Management of this critical element in soil-plant-animal-human system backed up with meticulous research needs to be prioritized. In this review, we made a generous effort to compose comprehensive yet compact literature on elemental cobalt, soil dynamics, uptake as well as its impacts. Further, this study discusses the most recent developments of managerial aspects to address the deficiency-toxicity dilemma which possibly is quite limited regarding bibliographic antecedents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117. https://doi.org/10.1016/j.plaphy.2016.08.005

  2. Agnihotri R, Vamil R, Singh G, Ahmad M, Sharma, R (2014) Effect of molybdenum and cobalt induced heavy metal stress on seedling growth stage of Vigna radiata. Acta Bot Hung 56:227–241. https://doi.org/10.1556/abot.56.2014.1-2.15

  3. Akbar FM, Zafar M, Hamid A, Ahmed M, Khaliq A, Khan MR, ur Rehman Z, (2013) Interactive effect of cobalt and nitrogen on growth, nodulation, yield and protein content of field grown pea. Hortic Environ Biotechnol 54:465–474

    CAS  Article  Google Scholar 

  4. Akeel A, Jahan A (2020) Role of cobalt in plants: its stress and alleviation. In: Naeem M, Ansari A, Gill S (eds) Contaminants in agriculture. Springer. https://doi.org/10.1007/978-3-030-41552-5_17

  5. Alaboudi KA, Ahmed B, Brodie G (2018) Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann agric sci 63:123–127. https://doi.org/10.1016/j.aoas.2018.05.007

    Article  Google Scholar 

  6. Ali B (2014) Studies on lipid peroxidation and antioxidant enzymes in the germinating seeds of Cicer arietinum exposed to cobalt. J Environ Biol 35:279–283

    Google Scholar 

  7. Ali B (2016) Interactive Effect of Cobalt and Some Phenolic Compounds on The Seed Germination and Seedling Growth in Cucumber (Cucumis sativus L.). Indian J Plant Sci 5:11–13

    Google Scholar 

  8. Ali B, Hayat S, Hayat Q, Ahmad A (2010) Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (Cicer arietinum L.). J Plant Interac 5:223–231. https://doi.org/10.1080/17429140903370584

    CAS  Article  Google Scholar 

  9. Ancona V, Caracciolo AB, Campanale C, Rascio I, Grenni P, Di Lenola M, Bagnuolo G, Uricchio VF (2020) Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J Chem Technol Biotechnol 95:940–949. https://doi.org/10.1002/jctb.6145

    CAS  Article  Google Scholar 

  10. Anjum NA, Duarte AC, Pereira E, Ahmad I (2015) Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues. Environ Sci Pollut Res 22:2239–2246. https://doi.org/10.1007/s11356-014-3478-3

    CAS  Article  Google Scholar 

  11. Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ionson Plant Growth and Development. Front Environ Sci 4:69. https://doi.org/10.3389/fenvs.2016.00069

    Article  Google Scholar 

  12. Ariponnammal S, Velvizhi R (2019) Structural, x-ray spectroscopic and low temperature magnetic studies on cobalt selenide. In: AIP Conference Proceedings, AIP Publishing LLC, 2117:020006. DOI:https://doi.org/10.1063/1.5114586

  13. Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manage 5:2319–4847

    Google Scholar 

  14. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    CAS  Article  PubMed  Google Scholar 

  15. Attar T (2020) A mini-review on importance and role of trace elements in the human organism. Chem Rev Lett 3:117–130. https://doi.org/10.22034/CRL.2020.229025.1058

    Article  Google Scholar 

  16. Awomi T, Singh AK, Kumar M, Bordoloi LJ (2012) Effect f phosphorus, cobalt and molybdenum nutrition on yield and quality of green gram (Vigna radiata L.). Indian J Hill Farm 25:22–26

    Google Scholar 

  17. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    CAS  Article  Google Scholar 

  18. Aziz E, Gad N, Khaled SM (2011) Effect of Cobalt on Growth and Chemical Composition of Peppermint Plant Grown in Newly Reclaimed Soil. Australian J Basic Appl Sci 5:628–633

    CAS  Google Scholar 

  19. Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot F, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: The use of micro-PIXE spectroscopy Nucl Instr Meth Phys Res B 231:350

    CAS  Google Scholar 

  20. Barker AV, Pilbeam DJ (eds) (2015) Handbook of Plant Nutrition. MA, CRC Press, Amherst

    Google Scholar 

  21. Barras F, Fontecave M (2011) Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3:1130–1134. https://doi.org/10.1039/c1mt00099c

    CAS  Article  PubMed  Google Scholar 

  22. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754

    CAS  Article  Google Scholar 

  23. Bashir F, Tariq M, Khan MH, Khan RA, Aslam S (2014) Fractionation of heavy metals and their uptake by vegetables growing in soils irrigated with sewage effluent. Turkish J Eng Environ Sci 38:1–10

    CAS  Article  Google Scholar 

  24. Basu M, Datta A, Basu TK (2005) Effect of cobalt, Rhizobium and phosphobacterium inoculation on growth attributes, yield, quality and nutrient uptake of summer groundnut (Arachis hypogeae L.). Ann Agric Sci 26:209–213

    Google Scholar 

  25. Basu M, Mondal P, Barak RK, Basu TK, Mahapatra SC (2006) Effect of cobalt, Rhizobium and phosphobacterium inoculation on yield and nutrient uptake in summer groundnut (Arachis hypogaea L.) on alluvial soils. J Indian Soc Soil Sci 54:60–64

    Google Scholar 

  26. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an ecosustainable green technology: its applications and limitations. Environmental pollutants and their bioremediation approaches. CRC Press, Boca Raton, pp 1–22

  27. Bharose R, Singh SK, Srivastava PK (2013) Heavy metals pollution in soil-water-vegetation continuum irrigated with ground water and untreated sewage. Bull Environ Sci Res 2:1–8

    Google Scholar 

  28. Bhattacharjee S, Singh AK, Kumar M, Sharma SK (2013) Phosphorus, Sulfur and Cobalt Fertilization Effect on Yield and Quality of Soybean (Glycine max L. Merrill) in Acidic Soil of Northeast India. Indian J Hill Farm 26:63–66

    Google Scholar 

  29. Bhattacharya P, Chakrabarti K, Chakraborty A (2008) Cobalt and nickel uptake by rice and accumulation in soil amended with municipal solid waste compost. Ecotoxcol Environ Saf 69:506–512. https://doi.org/10.1016/j.ecoenv.2007.03.010

    CAS  Article  Google Scholar 

  30. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica (Cairo) 2016:5464373. https://doi.org/10.1155/2016/5464373

    CAS  Article  Google Scholar 

  31. Boisson S, Le Stradic S, Collignon J, Séleck M, Malaisse F, Shutcha MN et al (2016) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South DR Congo. Environ Sci Pollut Res 23:13693–13705. https://doi.org/10.1007/s11356-015-5442-2

    CAS  Article  Google Scholar 

  32. Bolan NS, Adriano DC, Natesan R, Koo BJ (2003) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Quality 32:120–128. https://doi.org/10.2134/jeq2003.1200

    CAS  Article  Google Scholar 

  33. Bowling DJF, Macklon AES, Spanswick RM (1966) Active and passive transport of the major nutrient ions across the root of Ricinus communis. J Exp Bot 17:410–416. https://doi.org/10.1093/jxb/17.2.410

    CAS  Article  Google Scholar 

  34. Bradberry SM, Wilkinson JM, Ferner RE (2014) Systemic toxicity related to metal hip prostheses. Clin Toxicol (Phila) 52:837–847. https://doi.org/10.3109/15563650.2014.944977

    CAS  Article  Google Scholar 

  35. Bundschuh J, Litter M, Ciminelli VS, Morgada ME, Cornejo L, Hoyos SG et al (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America–A critical analysis. Water research 44:5828–5845. https://doi.org/10.1016/j.watres.2010.04.001

    CAS  Article  PubMed  Google Scholar 

  36. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol environ saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    CAS  Article  PubMed  Google Scholar 

  37. Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    CAS  PubMed  Article  Google Scholar 

  38. Campo RJ, Hungria M (2002) Importância dos micronutrientes na fixação biológica do nitrogênio. Inf Agron 98:6–9

    Google Scholar 

  39. Cárdenas González JF, Rodríguez Pérez AS, Vargas Morales JM, Martínez Juárez VM, Rodríguez IA, Cuello CM et al. (2019) Bioremoval of Cobalt (II) from aqueous solution by three different and resistant fungal biomasses. Bioinorg Chem Appl 2019. DOI:https://doi.org/10.1155/2019/8757149

  40. Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29:127–136. https://doi.org/10.1080/01904160500416513

    CAS  Article  Google Scholar 

  41. Chatterjee J, Chatterjee C (2005) Deterioration of Fruit Quality of Tomato by Excess Cobalt and Its Amelioration. Commun Soil SciPlant Anal 36:1931–1945

    CAS  Article  Google Scholar 

  42. Chaudhari AV, Mane, SS, Chadar BR (2018) Effect of Graded Levels of Potassium on Growth, Yield and Quality of Black Gram. Int J Curr Microbiol Appl Sci 6:1607–1612

  43. Chmielowska-Bąk J, Lefèvre I, Lutts S, Kulik A, Deckert J (2014) Effect of cobalt chloride on soybean seedlings subjected to cadmium stress. Acta Soc Bot Pol 83:201–207

    Article  Google Scholar 

  44. Collins RN, Kinsela AS (2010) The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79:763–771. https://doi.org/10.1016/j.chemosphere.2010.03.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. DalCorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6:1770–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Das DK (2000) Boron. Their Behaviour in Soil and Plants. Kalyani Publishers, Ludhiana, UP, India, Micronutrients, pp 127–161

    Google Scholar 

  47. Dozet G, Tubic SB, Kostadinovic L, Djukic V, Jaksic S, Popovic V, Cvijanovic M (2016) The effect of preceding crops nitrogen fertilization and cobalt and molybdenum application on yield and quality of soybean grain. Rom Agric Res 33:1–11

    Google Scholar 

  48. Du Laing G (2010) Analysis and fractionation of trace elements in soils. Trace elements in soil (PS Hooda, Eds). Blackwell Publishing Ltd. pp 53–80. https://doi.org/10.1002/9781444319477.ch4

  49. Du Laing G, Van Ryckegem G, Tack FM, Verloo MG (2006) Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere 63:1815–1823. https://doi.org/10.1016/j.chemosphere.2005.10.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Dushenkov V, Kumar PN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245. https://doi.org/10.1021/es00005a015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. El-Bady MS (2014) Spatial distribution of some important heavy metals in the soils south of Manzala Lake in Bahr El-Baqar region. Egypt. Nova J Eng Appl Sci 2:1–15

    Google Scholar 

  52. El-Baz EET, Lo’ay AA, Ibrahium EG, El-Deeb MRI, (2016) Effect of Cobalt and some Vitamins as Foliar Application Treatments on Productivity and Quality of Williams Banana Cultivar. J Plant Prod Mansoura Univ 7:777–786. https://doi.org/10.21608/jpp.2016.46163

    Article  Google Scholar 

  53. Eskander SB, El-dien FN, Hoballa EM, Hamdy K (2020) Capability of Lemna gibba to biosorb cesium-137 and cobalt-60 from simulated hazardous radioactive waste solutions. J Microbiol Biotechnol Food Sci 9:148–163

    Google Scholar 

  54. Fageria NK, Moraes MF, Ferreira EPB, Knupp AM (2012) Biofortification of trace elements in food crops for human health. Commun Soil Sci Plant Anal 43:556–570. https://doi.org/10.1080/00103624.2012.639431

    CAS  Article  Google Scholar 

  55. Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    CAS  Article  Google Scholar 

  56. Feng S, Wang X, Wei G, Peng P, Yang Y, Cao Z (2007) Leachates of municipal solid waste incineration bottom ash from Macao: Heavy metal concentrations and genotoxicity. Chemosphere 67:1133–1137. https://doi.org/10.3390/ijerph13111078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. https://doi.org/10.1039/B207574C

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J biotechnol 99:259–278. https://doi.org/10.1016/s0168-1656(02)00218-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microbiol 71:8627–8633. https://doi.org/10.1128/AEM.71.12.8627-8633.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Frohne T, Rinklebe J, Diaz-Bone RA (2014) Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil Sediment Contam 23:779–799. https://doi.org/10.1080/15320383.2014.872597

    CAS  Article  Google Scholar 

  61. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Fung ES, Monnpt A, Kovochich M, Unice KMM, Tvermoes BE, Galbraith D, Finley BL, Paustenbach DJ (2018) Characteristics of cobalt related cardiomiopathy in metal hip implant patients: An evaluation of 15 published reports. Cardiovasc Toxicol 18:206–220. https://doi.org/10.1007/s12012-017-9433-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Gad N (2006) Increasing the efficiency of nitrogen fertilization through cobalt application to pea plant. Res J Agric Biol Sci 2:433–442

    Google Scholar 

  64. Gad N, El Sayed SAA, Hassan NM (2020) Influence of cobalt on tolerating climatic change (salinity) in onion plant with reference to growth, yield and mineral composition. Plant Arch 20:1491–1495

    Google Scholar 

  65. Gad N, El–Metwally IM, (2015) Chemical and physiological response of maize to salinity using cobalt supplement. Int J ChemTech Res 8:45–52

    CAS  Google Scholar 

  66. Gad N, El-Zaher FHA, El-Maksoud HKA, El-Moez MRA (2011) Response of Faba bean (Vicia faba L.) to cobalt amendments and nitrogen fertilization. Afr J Plant Sci Biotechnol 5:41–45

    Google Scholar 

  67. Gad N, Fekry Ali ME, Abou-Hussein SD (2017) Improvement of Faba bean (Vicia faba L.) productivity by using cobalt and different levels of compost under new reclaimed lands. Middle East J Appl Sci 7:493–500

    Google Scholar 

  68. Gad N, Kandil H (2010) Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agric Biol J N Am 1:1069–1075

    CAS  Article  Google Scholar 

  69. Gad N, Mohammed AM, Bekbayeva LK (2013) Response of Cowpea (Vigna anguiculata) to Cobalt Nutrition. Middle-East J Scientific Res 14:177–184. https://doi.org/10.5829/idosi.mejsr.2013.14.2.2008

    CAS  Article  Google Scholar 

  70. Gad N, Sekara A, Abdelhamid MT (2019) The Potential Role of Cobalt and/or Organic Fertilizers in Improving the Growth, Yield, and Nutritional Composition of Moringa oleifera. Agronomy 9:862. https://doi.org/10.3390/agronomy9120862

    CAS  Article  Google Scholar 

  71. Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation 20:440–447. https://doi.org/10.1080/15226514.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Gautam SK, Maharana C, Sharma D, Singh AK, Tripathi JK, Singh SK (2015) Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand state, India. Sustain Water Qual Ecol 6:57–74. https://doi.org/10.1016/j.swaqe.2015.06.001

    Article  Google Scholar 

  73. Gautam SK, Sharma D, Tripathi JK, Ahirwar SK, Singh S (2013) A study of the effectiveness of sewage treatment plants in Delhi region. Applications Water Sci 3:57–65. https://doi.org/10.1007/s13201-012-0059-9

    Article  Google Scholar 

  74. Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Egypt Acad J Biol Sci 7:29–45. https://doi.org/10.21608/EAJBSG.2015.16483

    Article  Google Scholar 

  75. Golui D, Barman M, Datta SP, Shukla AK (2017) Fractionation of micronutrients and metals in soil. Manual on Advance Techniques for Analysis of Nutrients and Pollutant Elements in Soil, Plant and Human (SP Datta, MC Meena, BS Dwivedi and AK Shukla, Eds). Westville Publishing House, New Delhi

    Google Scholar 

  76. Gomaa MM, Melegy A, Metwaly H, Hassan S (2020) Geochemical and electrical characterization of heavy metals in contaminated soils. Heliyon 6:e04954. https://doi.org/10.1016/j.heliyon.2020.e04954

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34:619–628. https://doi.org/10.1081/CSS-120018963

    CAS  Article  Google Scholar 

  78. Hamilton EI (1994) The geobiochemistry of cobalt. Sci Total Environ 150:7–39. https://doi.org/10.1016/0048-9697(94)90126-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Han FX, Banin A, Kingery WL, Li ZP (2002) Pathways and kinetics of redistribution of cobalt among solid-phase fractions in arid-zone soils under saturated regime. J Environ Sci Health Part A 37:175–194

    Article  Google Scholar 

  80. Hanan SS, Mahmoud SA, Hady MA (2012) Increasing the utilization efficiency of nitrogenous fertilizers by cobalt addition and its effect on growth, yield parameters and nutrients contents of cowpea plants. J Appl Sci Res 8:915–929

    Google Scholar 

  81. Hazen RM, Hystad G, Golden JJ, Hummer DR, Liu C, Downs RT et al (2017) Cobalt mineral ecology. American Mineralogist 102:108–116. https://doi.org/10.2138/am-2017-5798

    Article  Google Scholar 

  82. Helmy LM, Gad N (2002) Effect of Cobalt fertilization on the yield, quality and the essential oil composition of parsley leaves. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 10:803–829

    Google Scholar 

  83. Hitzman MW, Bookstrom AA, Slack JF, Zientek ML (2017) Cobalt—Styles of deposits and the search for primary deposits: U.S. Geological Survey Open-File Report 2017–1155, p 47. https://doi.org/10.3133/ofr20171155

  84. Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396

    CAS  Article  Google Scholar 

  85. Huwait EA, Kumosani TA, Moselhy SS, Mosaoa RM, Yaghmoor S (2015) Relationship between soil cobalt and vitamin B12 levels in the liver of livestock in Saudi Arabia: Role of competing elements in soils. African Health Sciences 15:993–998. https://doi.org/10.4314/ahs.v15i3.38

    Article  PubMed  PubMed Central  Google Scholar 

  86. Imtiyaz S, Agnihotri RK, Ahmad S, Sharma R (2014) Effect of cobalt and lead induced heavy metal stress on some physiological parameters in Glycine Max. Intl J Agri Crop Sci 7:26–34

    CAS  Google Scholar 

  87. Iram A, Awan TH, Tanveer A, Akbar N, Saleem MF, Safdar ME (2017) Optimization of cobalt and nitrogen for improving seed yield, protein content and nitrogen use efficiency in mungbean. J Environ Agric 2:173–179

    Google Scholar 

  88. Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, Asiri A et al (2019) Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des 25:3645–3663. https://doi.org/10.2174/1381612825666191021142026

    CAS  Article  PubMed  Google Scholar 

  89. Iwegbue CM (2013) Chemical fractionation and mobility of heavy metals in soils in the vicinity of asphalt plants in Delta State, Nigeria. Environ Forensics 14:248–259. https://doi.org/10.1080/15275922.2013.814178

    CAS  Article  Google Scholar 

  90. Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated ground waters: a review of current technologies for contaminants removal. J Environ Manage 162:306–325. https://doi.org/10.1016/j.jenvman.2015.07.020

    CAS  Article  PubMed  Google Scholar 

  91. Jalali M, Majeri M (2016) Cobalt sorption–desorption behavior of calcareous soils from some Iranian soils. Geochem 76:95–102. https://doi.org/10.1016/j.chemer.2015.11.004

    CAS  Article  Google Scholar 

  92. Jalali M, Majeri M, Najafi S (2019) Kinetic release and fractionation of cobalt in some calcareous soils. J Geochem Explor 204:131–141. https://doi.org/10.1016/j.gexplo.2019.02.006

    CAS  Article  Google Scholar 

  93. Jaleel A, Jayakumar K, Chang-Xing Z, Azooz MM (2009) Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics J 2:120–126

    Google Scholar 

  94. Jayakumar K, Jaleel CA, Azooz MM (2008) Impact of cobalt on germination and seedling growth of Eleusine coracana L. and Oryza sativa L. under hydroponic culture. Global J Molecular Sci 3:18–20

    CAS  Google Scholar 

  95. Jayakumar K, Sathees kannan TM, Rajesh M, Vijayarengan P, (2013) Effect of Cobalt Chloride on Biochemical Constituents, Mineral Status and Antioxidant Potentials in Sesame (Sesamum indicum L.). Int J Modern Plant Animal Sci 1:67–81

    Google Scholar 

  96. Jayakumar K, Vijayarengan P, Chang-Xing Z, Jaleel CA (2008) Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of Glycine max (L.) Merr. Colloids Surf B: Biointerf 67:272–275. https://doi.org/10.1016/j.colsurfb.2008.08.012

    CAS  Article  Google Scholar 

  97. Jiang B, Adebayo A, Jia J, Xing Y, Deng S, Guo L et al (2019) Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J Hazard Mater 362:187–195. https://doi.org/10.1016/j.jhazmat.2018.08.060

    CAS  Article  PubMed  Google Scholar 

  98. Junior JFB, Santos JCP, Coelho CMM, Filho OK (2008) Effect of inoculation associated to leaf sprayed Co+Mo on the yield and grain nutrients in Common Bean (Phaseolus vulgaris L.). Brazilian Arch Biol Technol 51:1089–1096. https://doi.org/10.1590/S1516-89132008000600002

    Article  Google Scholar 

  99. Kabata-Pendias A (2011) Trace elements in soils and plants. Boca Raton, Florida, CRC Press, 4th edition

  100. Kalavrouziotis IK, Koukoulakis PH, Manouris G, Papadopoulos AH (2009) Interactions between cadmium, lead, cobalt, and nickel in broccoli, irrigated with treated municipal wastewater. Eur Water 25:13–23

    Google Scholar 

  101. Kandil H (2007) Effect of cobalt fertilizer on growth, yield and nutrients status of faba bean (Vicia faba L.) plants. J Appl Sci Res 3:867–872

    Google Scholar 

  102. Kandil H, El-Maghraby A (2016) Impact of cobalt form and level addition on wheat plants (Triticum aestivum L.): I. growth parameters and nutrients status. International J ChemTech Res 9:111–118

    CAS  Google Scholar 

  103. Kandil H, El-Maghraby A (2017) Impact of Cobalt Form and Level Addition on Wheat Plants (Triticum aestivum L.): II. Yield and nutrients contents. J Basic Appl Sci Res 7:1–7

    Google Scholar 

  104. Kandil H, Farid IM, El-Maghraby A (2013) Effect of cobalt level and nitrogen source on quantity and quality of soybean plant. J Basic Appl Sci Res 3:185–192

    Google Scholar 

  105. Karuppanapandian T, Kim W (2013) Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves Acta Physiol Plant 35:2429-2443. DOI:https://doi.org/10.1007/s11738-013-1277-y

  106. Khan MR, Khan MM (2010) Effect of Varying Concentration of Nickel and Cobalt on the Plant Growth and Yield of Chickpea. Aust J Basic Appl Sci 4:1036–1046

    CAS  Google Scholar 

  107. Kilic S, Kilic M, Soylak M (2020) The determination of toxic metals in some traditional cosmetic products and health risk assessment. Biol Trace Elem Res 1-6. DOI: https://doi.org/10.1007/s12011-020-02357-8

  108. Klasson M, Bryngelsson IL, Pettersson C, Husby B, Arvidsson H, Westberg H (2016) Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area. Ann Occup Hyg 60:684–699. https://doi.org/10.1093/annhyg/mew023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Kluger N, Raison-Peyron N, Guillot B (2009) Contact dermatitis to nickel related to cellular phone use. Presse medicale, Paris, France 1983:1694. https://doi.org/10.1089/ped.2013.0308

    Article  Google Scholar 

  110. Koleleni Y I, Mbike SA (2018) Analysis of Heavy Metals in Soil and Maize Grown around Namungo Gold Mine in Ruangwa District, Lindi Region in Tanzania Using X-ray Fluorescence. Chem Sci Int J:1-18. DOI: https://doi.org/10.9734/CSJI/2018/44976

  111. Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proceedings of the National Academy of Sciences 94:36–41. https://doi.org/10.1073/pnas.94.1.36

    CAS  Article  Google Scholar 

  112. Kosiorek M Wyszkowski M (2020) Remediation of Cobalt-Contaminated Soil Using Manure, Clay, Charcoal, Zeolite, Calcium Oxide, Main Crop (Hordeum vulgare L.), and After-Crop (Synapis alba L.). Minerals 10:429. https://doi.org/10.3390/min10050429

  113. Kosiorek M, Wyszkowski M (2019) Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.). Environ Sci Pollut Res 26:16762–16780

    CAS  Article  Google Scholar 

  114. Kräutler B (2005) Vitamin B12: Chemistry and biochemistry. Biochem Soc Trans 33:806–810. https://doi.org/10.1042/BST0330806

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kumar M, Kumar V, Varma A, Prasad R, Sharma AK, Pal A et al (2016) An efficient approach towards the bioremediation of copper, cobalt and nickel contaminated field samples. J soil sediment 16:2118–2127

    CAS  Article  Google Scholar 

  116. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste management 28:215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168:944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. https://doi.org/10.1016/j.cej.2006.01.015

    CAS  Article  Google Scholar 

  119. Lago-Vila M, Arenas-Lago D, Rodríguez-Seijo A, Andrade Couce ML, Vega FA (2015) Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid Earth 6:323–335. https://doi.org/10.5194/se-6-323-2015

    Article  Google Scholar 

  120. Lana RMQ, Faria MVD, Bonotto I, Lana AMQ (2009) Cobalt and molybdenum concentrated suspension for soybean seed treatment. R Bras Ci Solo 33:1715–1720. https://doi.org/10.1590/S0100-06832009000600020

    CAS  Article  Google Scholar 

  121. Lange B, Pourret O, Meerts P, Jitaru P, Cancès B, Grison C, Faucon MP (2016) Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146:75–84. https://doi.org/10.1016/j.chemosphere.2015.11.105

    CAS  Article  PubMed  Google Scholar 

  122. Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:557–551. https://doi.org/10.1111/nph.14175

    CAS  Article  Google Scholar 

  123. Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F et al (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551. https://doi.org/10.1111/nph.14175

    CAS  Article  PubMed  Google Scholar 

  124. Lawson LS, McComb JQ, Dong R, Han FX, Roger C, Arslan Z, Yu H (2016) Binding, fractionation, and distribution of Cs Co, and Sr in a US coastal soil under saturated and field capacity moisture regimes. J Soil Sediment 16:497–508

    CAS  Article  Google Scholar 

  125. Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374. https://doi.org/10.3389/fpls.2013.00374

    Article  PubMed  PubMed Central  Google Scholar 

  126. Levent Tuna A, Burun B, Yokas I, Coban E (2002) The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turkish J Biol 26:109–113

    Google Scholar 

  127. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    CAS  Article  PubMed  Google Scholar 

  128. Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity And bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986. https://doi.org/10.1016/j.chemosphere.2008.12.068

    CAS  Article  PubMed  Google Scholar 

  129. Li S, Chen S, Wang M, Lei X, Zheng H, Sun X, et al. (2020) Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe+ pH conditions. Chemosphere:126355. DOI: https://doi.org/10.1016/j.chemosphere.2020.126355

  130. Li Z, McLaren G, Metherell K (2004) The Availability of Native and Applied Soil Cobalt to Ryegrass in Relation to Soil Cobalt and Manganese Status and Other Soil Properties. NZ. J Agric Res 47:33–43. https://doi.org/10.1080/00288233.2004.9513568

    CAS  Article  Google Scholar 

  131. Li H, Wang M, Zhang W, Zhang Z, Zhang X (2016) Fractional characteristics of heavy metals Pb, Zn, Cu, and Cd in sewer sediment from areas in central Beijing, China, J Chem. https://doi.org/10.1155/2016/9724128

  132. Li Z, McLaren RG, Metherell AK (2001) Cobalt and manganese relationships in New Zealand soils. New Zealand J Agric Res 44:191–200. https://doi.org/10.1080/00288233.2001.9513477

    CAS  Article  Google Scholar 

  133. Li Z, McLaren RG, Metherell AK (2001) Fractionation of cobalt and manganese in New Zealand soils. Aust J Soil Res 39:951–967. https://doi.org/10.1071/SR00081

    CAS  Article  Google Scholar 

  134. Lide DR (1991) CRC handbook of chemistry and physics. CRC, Boca Raton, 72nd Edition

  135. Liu B, Huang Q, Su Y, Xue Q, Sun L (2019) Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus. Environ Sci Pollut Res 26:7486–7496. https://doi.org/10.1007/s11356-018-04080-3

    CAS  Article  Google Scholar 

  136. Lu H, Wei F, Tang J, Giesy JP (2016) Leaching of metals from cement under simulated environmental conditions. J Environ Manage 169:319–327. https://doi.org/10.1016/j.jenvman.2015.12.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Lwalaba JW, Louisa LT, Zvobgoa G, Richmonda MEA, Fua L, Naza S, Mwambaa M, Mundendeb RPM, Zhang G (2020) Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicol Environ Safety 187:109866. https://doi.org/10.1016/j.ecoenv.2019.109866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Lwalaba JW, Zvobgo G, Louis LT, Fu L, Mwamba TM, Mundende RPM, Zhang G (2019) Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicol Environ Saf 180:234–241. https://doi.org/10.1016/j.ecoenv.2019.04.077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Ma Y, Hooda PS (2010) Chromium, nickel and cobalt. Trace elem Soil 13:461–480

    Article  Google Scholar 

  140. Mahey S, Kumar R, Sharma M, Kumar V, Bhardwaj R (2020) A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences 2:1–12. https://doi.org/10.1007/s42452-020-3020-9

    CAS  Article  Google Scholar 

  141. Malinowska E, Jankowski K (2020) The Effect of Different Doses of Sewage Sludge and Liming on Total Cobalt Content and its Speciation in Soil. Agronomy 10:1550. https://doi.org/10.3390/agronomy10101550

    CAS  Article  Google Scholar 

  142. Manzoor J, Sharma M (2019) Impact of Biomedical Waste on Environment and Human Health. Environ Claims J 31:311–334. https://doi.org/10.1080/10406026.2019.1619265

    Article  Google Scholar 

  143. Marimuthu S, Surendran U (2015) Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone. India. Cogent Food Agriculture 1:1010415. https://doi.org/10.1080/23311932.2015.1010415

    CAS  Article  Google Scholar 

  144. Marschner H (1995) Function of mineral nutrients: micronutrients. In: Marschner H (ed) Mineral nutrition of higher plants. Academic Press, London, pp 347–364

  145. Mart´inez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-L´opez C, Bast´ias E, Garc´ia-Viguera C, Carvajal M, (2009) Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sust Dev 30:295–309

    Google Scholar 

  146. McCullough E, Nassar NT (2017) Assessment of critical minerals: Updated application of an early-warning screening methodology. Miner Econ 30:257–272

    Article  Google Scholar 

  147. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. https://doi.org/10.1016/s0958-1669(03)00060-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Meyerholt B (2016) Phytoextraction of Cadmium: The advantages, limitations, cost and potential improvements of this remediation technique

  149. Mico´ C, Recatala´ L, Peris M, Sa´nchez J, (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016

    CAS  Article  Google Scholar 

  150. Miller WP, Martens DC, Zelazny LW (1986) Effect of sequence in extraction of trace metals from soils. Soil Sci Soc America J 50:598–601

    Article  Google Scholar 

  151. Minz A, Sinha AK, Kumar R, Kumar B, Deep KP, Kumar SB (2018) A Review on Importance of Cobalt in Crop Growth and Production. Int J Curr Microbiol Appl Sci 7:2978–2984

    Article  CAS  Google Scholar 

  152. Mohamed MA, Elserif MH, Hegazi A, Gad N, Ahmed GSS (2011) Reducing N doses by nodule formation in groundnut plants via Co and Mo. Aust J Basic Appl Sci 5:2568–2577

    Google Scholar 

  153. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904. https://doi.org/10.1104/pp.108.130294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Mosoarca G, Vancea C, Popa S, Boran S (2018) Adsorption, bioaccumulation and kinetics parameters of the phytoremediation of cobalt from wastewater using Elodea canadensis. Bull Environ Contam Toxicol 100:733–739. https://doi.org/10.1007/s00128-018-2327-3

    CAS  Article  PubMed  Google Scholar 

  155. Munzuroglu O, Geckil H (2002) Effects of Metals on Seed Germination, Root Elongation, and Coleoptile and Hypocotyl Growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213. https://doi.org/10.1007/s00244-002-1116-4

    CAS  Article  PubMed  Google Scholar 

  156. Muradoglu F, Beyhan O, Sonmez F (2017) Response to heavy metals on pollen viability, germination and tube growth of some apple cultivars. Fresenius Environ Bull 26:4456–4461

    CAS  Google Scholar 

  157. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Article  Google Scholar 

  158. Nassem MG, Abdalla YH (2003) Cobalt status in the North Western Coast soils of Egypt in relation to cobalt content of barley for ruminants. Proceedings of the 1st International Symposium, Environment Biogeochemistry. October 10–15, Edinburgh, Scotland

  159. Nicholls D (1973) The chemistry of iron, cobalt and nickel. In: Nicholls D (ed) Comprehensive inorganic chemistry. Pergamon Press. https://doi.org/10.1016/B978-0-08-018874-4.50004-2

  160. Pahwa K, Ghai N, Kaur J, Singh I, Singh S, Dhingra (2017) Influence of ethylene and cobalt chloride on photosynthetic parameters and pedicel anatomy of pigeonpea (Cajanus cajan L.) genotypes. J Envioron Biol 38:367–374

  161. Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer. https://doi.org/10.1007/978-3-319-40148-5_2

  162. Palit S, Sharma A, Talukder G (1994) Effects on cobalt on plants. Bot Rev 60:149–181

    Article  Google Scholar 

  163. Pattanayak SK, Dash D, Nayak RK (2000) Seed treatment of greengram with Molybdenum and Cobalt effect on nodulation, biomass production and N uptake in acid soil. J Indian Soc Soil Sci 48:769–773

    CAS  Google Scholar 

  164. Paustenbach DJ, Galbraith DA, Finley BL (2014) Interpreting cobalt blood concentrations in hip implant patients. Clin Toxicol (Phila) 52:98–112. https://doi.org/10.3109/15563650.2013.857024

    CAS  Article  Google Scholar 

  165. Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD (2013) A review of the health hazards posed by cobalt. Crit Revi Toxicol 43:316–362. https://doi.org/10.3109/10408444.2013.779633

    CAS  Article  Google Scholar 

  166. Peng J, Liu F, Zhou F, Song K, Zhang C, Ye L, He Y (2016) Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. Trends Analyt Chem 85:260–272. https://doi.org/10.1016/j.trac.2016.08.015

    CAS  Article  Google Scholar 

  167. Perez-Espinosa A, Moral R, Moreno-Caselles J, Cortes A, Perez-Murcia MD, Gomez I (2005) Co phytoavailability for tomato in amended calcareous soils. Bioresour Technol 96:649–655

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274. https://doi.org/10.1016/j.pbi.2009.04.009

  169. Pimentel C, Caetano SM, Menezes R, Figueira I, Santos CN, Ferreira RB, Santos MAS, Rodrigues-Pousada C (2014) Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1840:1977–1986

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. Poschenrieder C, Busoms S, Barceló J (2019) How plants handle trivalent (+3) elements. Int J Mol Sci 20:3984

    CAS  PubMed Central  Article  Google Scholar 

  171. Pourret O, Faucon M. (2018) Cobalt. Encyclopedia of geochemistry. https://doi.org/10.1007/978-3-319-39193-9_271-2

  172. Poznanović Spahić MM, Sakan SM, Glavaš-Trbić BM, Tančić PI, Škrivanj SB, Kovačević JR, Manojlović DD (2019) Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). J Environ Sci Health A 54:219–230. https://doi.org/10.1080/10934529.2018.1544802

    CAS  Article  Google Scholar 

  173. Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of chromium and cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2:136–138

  174. Raghuvanshi MS, Tewari JC, Dolma R, Arunachalam A, Yadav OP (2017) Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: A case study on Ladakh folk agriculture. Climate Change Environ Sustain 5:59–65

    Article  Google Scholar 

  175. Rawat KS, Kumar R, Singh SK (2019) Topographical distribution of cobalt in different agro-climatic zones of Jharkhand state. India, Geol Ecol Landsc 3:14–21. https://doi.org/10.1080/24749508.2018.1481654

    Article  Google Scholar 

  176. Remigio AC, Chaney RL, Baker AJ, Edraki M, Erskine PD, Echevarria G, van der Ent A (2020) Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant Soil 449:11–37. https://doi.org/10.1007/s11104-020-04487-3

    CAS  Article  Google Scholar 

  177. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144. https://doi.org/10.3389/fpls.2013.00144

    Article  PubMed  PubMed Central  Google Scholar 

  178. Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28:421–430. https://doi.org/10.1081/PLN-200049153

    CAS  Article  Google Scholar 

  179. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

    Article  Google Scholar 

  180. Rue M, Paul AL, Echevarria G, van der Ent A, Simonnot MO, Morel JL (2020) Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics 12:1278–1289. https://doi.org/10.1039/D0MT00099J

    CAS  Article  PubMed  Google Scholar 

  181. Rule JH (1999) Trace metal cation adsorption in soils: selective chemical extractions and biological availability. Studies in Surface Science and Catalysis. Elsevier 120:319–349. https://doi.org/10.1016/S0167-2991(99)80364-4

    Article  Google Scholar 

  182. Sahay N, Singh SP, Ali J, Sharma YK (2015) Effect of cobalt and sulphur nutrition on yield, quality and uptake of nutrients in lentil. Legume Res 38:631–634

    Google Scholar 

  183. Saleem M, Asghar HN, Zahir ZA, Shahid M (2019) Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination. Rev Int de Contam Ambient 35:999–1009. https://doi.org/10.20937/rica.2019.35.04.18

    Article  Google Scholar 

  184. Saleh HM, Moussa HR, Mahmoud HH, El-Saied FA, Dawoud M, Wahed RSA (2020) Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog Nucl Energy 118:103147

  185. Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    CAS  Google Scholar 

  186. Samet H (2020) Alleviation of cobalt stress by exogenous sodium nitroprusside in iceberg lettuce. Chil J Agric Res 80:161–17. https://doi.org/10.4067/S0718-58392020000200161

    Article  Google Scholar 

  187. Samuel LT, Wermer LN, James DB (1990) Soil fertility and fertilizers. Macrmillan Publishing Company, New York, Fourth Edition

    Google Scholar 

  188. Sar P, D’Souza SF (2001) Biosorptive uranium uptake by a Pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76:1286–1294. https://doi.org/10.1002/jctb.517

    CAS  Article  Google Scholar 

  189. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    CAS  Article  PubMed  Google Scholar 

  190. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol 249:71–131. https://doi.org/10.1007/398_2019_24

    CAS  Article  Google Scholar 

  191. Sengupta S, Bhattacharya P, Hazra S (2019) Ensuring nutritional security through zinc biofortification of rice grain in Indian scenario: A review. Int J Chem Stud 7:2129–2144

    CAS  Google Scholar 

  192. Shackira AM, Puthur JT (2019) Phytostabilization of heavy metals: understanding of principles and practices. In: Srivastava S, Srivastava A, Suprasanna P (eds) Plant-metal interactions. Springer. https://doi.org/10.1007/978-3-030-20732-8_13

  193. Shalygo NV, Kolensikova NV, Voronetskaya VV, Averina NG (1999) Effects of Mn2+, Fe2+, Co2+ and Ni2+ on chlorophyll accumulation and early stages of chlorophyll formation of greening barley seedling. Russian Jl Plant Physiol 46:496–501

    CAS  Google Scholar 

  194. Sharma S, Rana S, Thakkar A, Baldi A, Murthy RSR, Sharma RK (2016) Physical, chemical and phytoremediation technique for removal of heavy metals. J Heavy Metal Toxicity Diseases 1:1–15

    Google Scholar 

  195. Shuman LM (1985) Fractionation method for soil microelements. Soil Sci 140:11–22

    CAS  Article  Google Scholar 

  196. Shutcha MN, Faucon MP, Kissi CK, Colinet G, Mahy G, Luhembwe MN et al (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol Eng 82:81–90

    Article  Google Scholar 

  197. Sillanpaa M, Jansson H (1992) Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bulletin 65, Rome

    Google Scholar 

  198. Singh AK, Singh PK, Kumar M, Bordoloi LJ, Jha AK (2014) Nutrient Management for Improving Mungbean [Vigna radiate (L.) Wilczek] Productivity in Acidic Soil of Northeast India. Indian J Hill Farm 27:37–41

    Google Scholar 

  199. Singh AL, Jat RS, Chaudhari V, Bariya H, Sharma SJ (2010) Toxicities and Tolerance of mineral elements boron, cobalt, molybdenum and nickel in crop plants. Plant Stress. Global Science Books 4:31–56

    Google Scholar 

  200. Singh DK, Singh AK, Singh M, Bordoloi LJ, Srivastava OP (2012) Production potential and nutrient uptake efficiency of pea (Pisum sativum L.) as influenced by different fertility levels and micronutrients. J Indian Soc Soil Sci 60:150–155

    CAS  Google Scholar 

  201. Smith RM (1987) Cobalt. In: Mertz W (ed) Trace elements in human and animal nutrition. Academic Press, pp 143–183. https://doi.org/10.1016/B978-0-08-092468-7.50009-0

  202. Souiri M, Aissa M, Góis J, Oulgour R, Mezougane H, El Azmi M, Moussaid A (2020) Application of Multivariate Statistics and Geostatistical Techniques to Identify the Distribution Modes of the Co, Ni, As and Au-Ag ore in the Bou Azzer-East Deposits (Central Anti-Atlas Morocco). Econ Environ Geol 53:363–381. https://doi.org/10.9719/EEG.2020.53.3.1

    Article  Google Scholar 

  203. Srivastava S, Shukla AK (2016) Differential response of black gram towards heavy Metal Stress. Environ Pollut Prot 1:89–96

    Google Scholar 

  204. Suppi IM, Campos ML, Miquelluti DJ, Bueno DK (2018) Cobalt and manganese content in soils of Santa Catarina. Rev Ciênc Agrovet 17:579–588. https://doi.org/10.5965/223811711732018579

    Article  Google Scholar 

  205. Tahir MB, Kiran H, Iqbal T (2019) The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ Sci Pollut Res 26:10515–10528. https://doi.org/10.1007/s11356-019-04547-x

    CAS  Article  Google Scholar 

  206. Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R (2016) Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioproc biosyst eng 39:1899–1911. https://doi.org/10.1007/s00449-016-1664-z

    CAS  Article  Google Scholar 

  207. Talukder G, Sharma A (2007) Cobalt. Handbook of plant nutrition. CRC Taylor and Francis, Boca Raton, pp 449–514

    Google Scholar 

  208. Tenywa JS (2003) Influence of cobalt fertilization on symbiotic nitrogen fixation indicators in an oxisol in Uganda. Afr Crop Sci J 5:87–92

  209. Tessier A, Campbell PG, Bisson MJAC (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analyt chemi 51:844–851. https://doi.org/10.1021/ac50043a017

    CAS  Article  Google Scholar 

  210. Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388. https://doi.org/10.1016/S0168-9452(01)00578-7

    CAS  Article  Google Scholar 

  211. Tiwari J, Ankit, Sweta, Kumar S, Korstad J, Bauddh K (2019) Ecorestoration of polluted aquatic ecosystems through rhizofiltration. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, pp 179–201. https://doi.org/10.1016/B978-0-12-813912-7.00005-3

  212. Tokumaru T, Ozaki H, Onwona-Agyeman S, Ofosu-Anim J, Watanabe I (2017) Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Arch Environ Contam Toxicol 73:377–390. https://doi.org/10.1007/s00244-017-0434-5

    CAS  Article  PubMed  Google Scholar 

  213. Tomic D, Stevovic V, Durovic D, Stanisavljevic R (2014) Effect of Cobalt Application on Seed Production in Red Clover (Trifolium pratense L.). J Agr Sci Tech 16:517–526

    CAS  Google Scholar 

  214. Toro N, Robles P, Jeldres RI (2020) Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol Rev 103699. DOI: https://doi.org/10.1016/j.oregeorev.2020.103699

  215. Tvermoes BE, Paustenbach DJ, Kerger BD, Finley BL, Unice KM (2015) Review of cobalt toxicokinetics following oral dosing: Implications for health risk assessment and metal-on-metal hip implant patients. Crit Rev Toxicol 45:367–387. https://doi.org/10.3109/10408444.2014.985818

    CAS  Article  PubMed  Google Scholar 

  216. U.S. Geological Survey (2017) Mineral commodity summaries 2017: U.S. Geological Survey, p 202. https://doi.org/10.3133/70180197

  217. U.S. National Science and Technology Council (2016) Assessment of critical minerals: screening methodology and initial application. U.S. Office of Science and Technology Policy, Executive Office of the President, Washington, DC

  218. Uddin MH, Rumman M (2020) Cobalt Toxicity and Human Health. Metal Toxicology Handbook. CRC Press

  219. Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl biochem biotechnol 181:464–482

    CAS  PubMed  Article  Google Scholar 

  220. Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369. https://doi.org/10.1016/j.eti.2019.100369

    Article  Google Scholar 

  221. Von Wald GA, Gemperline E, Evenson MD, Kajdan TW, Knueppel DI, Richards JT et al (2019) Analytical Chemistry: A Crucial Tool in Process Development for New Agricultural Active Ingredients. Org Process Res Dev 23:2191–2199

    CAS  Article  Google Scholar 

  222. Wang M, Liu B, Ma Y, Xue Q (2017) Influence of calcium carbonate on cobalt phytoavailability in Fluvoaquic soil. IOP Conference Series Materials Science and Engineering 274:012158. https://doi.org/10.1088/1757-899X/274/1/012158

    Article  Google Scholar 

  223. Wang P, Sun Z, Hu Y, Cheng H (2019) Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci Total Environ 695:133893. https://doi.org/10.1016/j.scitotenv.2019.133893

    CAS  Article  PubMed  Google Scholar 

  224. Wang YM, Yang Q, Xu H, Liu YJ, Yang HL (2020) Physiological and transcriptomic analysis provide novel insight into cobalt stress responses in willow. Scientific Reports 10:1–12. https://doi.org/10.1016/j.scitotenv.2019.133893

    CAS  Article  Google Scholar 

  225. Woodward TL, Thomas RJ, Xing B (2003) Potential for phytoextraction of cobalt by tomato. Commun Soil Science Plant Anal 34:645–654

    Article  CAS  Google Scholar 

  226. Xiang HF, Tang HA, Ying QH (1995) Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma 66:121–135

    CAS  Article  Google Scholar 

  227. Yadav BK, Siebel MA, van Bruggen JJ (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean-Soil Air Water 39:467–474

    CAS  Article  Google Scholar 

  228. Yadav KK, Gupta N, Kuma A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and prospects. Ecol eng 120:274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039

    Article  Google Scholar 

  229. Yamaguchi T, Tomioka R, Takenaka C (2017) Accumulation of cobalt and nickel in tissues of Clethra barbinervis in a metal dosing trial. Plant Soil 421:273–283

    CAS  Article  Google Scholar 

  230. Zaborowska M, Kucharski J, Wyszkowska J (2016) Biological activity of soil contaminated with cobalt, tin and molybdenum. Environ Monit Assess 188:398. https://doi.org/10.1007/s10661-016-5399-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  231. Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    CAS  Article  Google Scholar 

  232. Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115. https://doi.org/10.1023/A:1017934708402

    CAS  Article  Google Scholar 

  233. Zhang J, Yang N, Geng Y, Zhou J, Lei J (2019) Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). RSC advances 9:20603–20611

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed significantly towards the final make up of the paper. Purabi Banerjee and Parijat Bhattacharya prepared the original draft, edited and compiled the manuscript.

Corresponding author

Correspondence to Parijat Bhattacharya.

Ethics declarations

Conflict of interest

There exists no conflict of interest among the authors.

Research involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Bhattacharya, P. Investigating Cobalt in Soil-plant-animal-human system: Dynamics, Impact and Management. J Soil Sci Plant Nutr (2021). https://doi.org/10.1007/s42729-021-00525-w

Download citation

Keywords

  • Cobalt
  • Fractions
  • Phytoavailability
  • Toxicity
  • Management
  • Remediation