Skip to main content

Is the Lack of Response of Maize to Fertilization in Soils with Low Bray1-P Related to Labile Organic Phosphorus?

Abstract

The usual soil test phosphorus (P) neglects the P supply from labile organic P (Po) fractions, which could explain the nonresponse of maize (Zea mays L.) in sites with soil P testing below the critical level. We aim to determine Po and inorganic P (Pi) in NaHCO3 extracts and in the coarse soil fraction (hereinafter, CF) from responsive and nonresponsive sites to P fertilization in maize. We then compare the classification errors of the Cate and Nelson method by comparing the relationship between maize relative yield and the soil Bray1-P concentration vs. the new proposed indices. The study included responsive and nonresponsive sites to P fertilization carried out across the Pampas Region in the center-east of Argentina. Treatments included four P fertilization rates: 0, 12, 24, and 36 kg P ha−1. The experiments were laid out in a randomized complete block design with three replicates. We determined Bray1-P, Pi, and Po in NaHCO3 extracts and in the coarse soil fraction. Sites non-responsive to P fertilization and with Bray1-P concentrations below the critical level showed 70% more Po in the coarse soil fraction (Po-CF) than sites with high crop response and similar Bray1-P level. However, Po-Bic alone did not improve the relationship with maize relative yield. Po-CF and Bray1-P included in a soil integrative P index improved the prediction of crop response to P fertilization and reduced classification errors, which suggests that Po-CF is a source of available P for the crops. The novelty reported in this study was to demonstrate the organic P contribution to relative yield by including it into an integrative soil testing. We find that nonresponsive sites to P fertilization, with low Bray1-P, were correctly classified when including Po-CF in a new soil test P. Improvements in the P fertilization diagnostic prescription tool contribute to an increase in  economic profit and reduce environmental impact.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Appelhans SC, Melchiori RJ, Barbagelata PA, Novelli LE (2016) Assessing organic phosphorus contributions for predicting soybean response to fertilization. Soil Sci Soc Am J 80:1688–1697. https://doi.org/10.2136/sssaj2016.04.0130

    CAS  Article  Google Scholar 

  2. Appelhans SC, Barbagelata PA, Melchiori RJ, Gutierrez Boem F (2020) Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag 00:1–12. https://doi.org/10.1111/sum.12581

    Article  Google Scholar 

  3. Aramburu Merlos F, Monzon JP, Mercau JL, Taboada M, Andrade FH, Hall AJ, Jobbagy E, Cassman KG, Grassini P (2015) Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crop Res 184:145–154. https://doi.org/10.1016/j.fcr.2015.10.001

    Article  Google Scholar 

  4. Barbagelata PA (2011) Fertilización fosfatada para trigo y maíz en siembra directa: diagnóstico de fertilidad y estrategias de fertilización. p 90-97. Actas del Simposio “Fertilidad 2011: La nutrición de cultivos vinculada al sistema de producción”. Rosario, 18-19 Mayo. IPNI, Fertilizar A.C. Rosario, Santa Fe

  5. Barrow NJ (1983) On the reversibility of phosphate sorption by soils. J Soil Sci 34:751–758. https://doi.org/10.1111/j.1365-2389.1983.tb01069.x

    CAS  Article  Google Scholar 

  6. Beegle D (2005) Assessing soil phosphorus for crop production by soil testing. In: Sims JT and Sharpley AN (eds) Phosphorus: Agriculture and the Environment Agronomy Monograph 46:123–142

  7. Bowman RA (1989) A sequential extraction procedure with concentrated sulfuric acid and dilute base for soil organic phosphorus. Soil Sci Soc Am J 53:362–366. https://doi.org/10.2136/sssaj1989.03615995005300020008x

    CAS  Article  Google Scholar 

  8. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soil. Soil Sci 59:39–45

    CAS  Article  Google Scholar 

  9. Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x

    Article  Google Scholar 

  10. Cate RB, Nelson LA (1965) A rapid method for correlation of soil test analyses with plant response data. North Carolina Agric. Exp. Stn., Int. Soil Testing Series Tech. Bull. N° 1

  11. Ciampitti IA, Garcia FO, Picone LI, Rubio G (2011) Soil carbon and phosphorus pools in field crop rotations in Pampean soil of Argentina. Soil Sci Soc Am J 75:616–625. https://doi.org/10.2136/sssaj2010.0168

    CAS  Article  Google Scholar 

  12. Condron LM, Turner BL, Cade-Menun J (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. American Society of Agronomy, Madison, pp 87–121

    Google Scholar 

  13. Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food thought. Glob Environ Chang 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  14. Dahnke WC, Olson RA (1990) Soil test correlation, calibration and recommendation. In: Westerman RL (ed) Soil testing and plant analysis, SSSA Book Ser, vol 3, 3er edn. SSSA, Madison, pp 45–71

  15. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  16. Fixen P, Grove JH (1990) Testing soils for phosphorus. In: Westerman RL (ed) Soil testing and plant analysis, SSSA Book Ser, vol 3, 3er edn. SSSA, Madison, pp 141–180

  17. Gagnon B, Ziadi N, Bélanger G, Parent N (2020) Validation and use of critical phosphorus concentration in maize. Eur J Agron 120:126–147. https://doi.org/10.1016/j.eja.2020.126147

  18. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: physical and mineralogical methods. Agron. Monogr. 9, 2nd edn. ASA, Madison, pp 383–411

    Google Scholar 

  19. Ha KV, Marschner P, Bünemann EK (2008) Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant Soil 303:253–264. https://doi.org/10.1007/s11104-007-9504-1

    CAS  Article  Google Scholar 

  20. Heckman JR, Jokela W, Morris T, Beegle DB, Sims JT, Cole FJ, Herbert S, Griffin T, Hoskins B, Jemison J, Sullivan WM, Bhumbla D, Estes G, Reid WS (2006) Soil test calibration for predicting corn response to phosphorus in the Northeast USA. Soil Sci Soc Am J 90:280–288. https://doi.org/10.2134/agronj2005-0122

    Article  Google Scholar 

  21. Hedley MJ, Stewart JWB, Chahuan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976. https://doi.org/10.2136/sssaj1982.03615995004600050017x

    CAS  Article  Google Scholar 

  22. Irizar A, Andriulo A, Consentino D, Amendola C (2010) Comparación de dos métodos de fraccionamiento físico de la materia orgánica del suelo. Ci Suelo 28:115–121

    Google Scholar 

  23. MacDonald GK, Bennet EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci 108:3086–3091. https://doi.org/10.1073/pnas.1010808108

    Article  PubMed  Google Scholar 

  24. Mallarino A (2003) Field calibration for corn of the Mehlich-3 soil phosphorus test with colorimetric and inductively coupled plasma emission spectroscopy determination methods. Soil Sci Soc Am J 67:1928–1934. https://doi.org/10.2136/sssaj2003.1928

    CAS  Article  Google Scholar 

  25. Mallarino A, Atia AM (2005) Correlation of a resin membrane soil phosphorus test with corn yield and routine soil test. Soil Sci Soc Am J 69:266–272. https://doi.org/10.2136/sssaj2005.0266

    CAS  Article  Google Scholar 

  26. Mallarino AP, Blackmer AM (1992) Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agron J 84:850–856. https://doi.org/10.2134/agronj1992.00021962008400050017x

    CAS  Article  Google Scholar 

  27. Maltese N, Melchiori RJM, Maddonni GA, Ferreyra JM, Caviglia OP (2019) Nitrogen economy of early and late-sown maize crops. Field Crop Res 231:40–50. https://doi.org/10.1016/j.fcr.2018.11.007

    Article  Google Scholar 

  28. McDowell RW, Condron LM, Stewart I (2008) An examination of potential extraction methods to assess plant-available organic phosphorus in soil. Biol Fertil Soils 44:707–715. https://doi.org/10.1007/s00374-007-0253-3

    CAS  Article  Google Scholar 

  29. McLaren TI, Guppy CN, Tighe MK, Moody P, Bell M (2014) Dilute acid extraction is a useful indicator of the supply of slowly available phosphorus in Vertisols. Soil Sci Soc Am J 78:139–146. https://doi.org/10.2136/sssaj2013.05.0188

    CAS  Article  Google Scholar 

  30. Recena R, Diaz I, del Campillo MC, Torrent J, Delgado A (2016) Estimation of threshold Olsen P values for fertilizer response in soils of Mediterranean areas. Agron Sustain Dev 36:54. https://doi.org/10.1007/s13593-016-0387-5

    CAS  Article  Google Scholar 

  31. Recena R, Diaz I, García-López Diaz AM, Delgado A (2019) The determination of total phosphorus improves the accuracy of the bicarbonate extraction as an availability index. Soil Use Manag 35:346–354. https://doi.org/10.1111/sum.12498

    Article  Google Scholar 

  32. Sainz Rozas HR, Echeverría HE, Angelini HP (2012) Fósforo disponible en suelos agrícolas de la región Pampeana y Extra Pampeana argentina. Rev Inv Agrop 38:33–39

    Google Scholar 

  33. Salas AM, Elliott ET, Westfall DG, Cole CV, Six J (2003) The role of particulate organic matter in phosphorus cycling. Soil Sci Soc Am J 67:181–189. https://doi.org/10.2136/sssaj2003.1810

    CAS  Article  Google Scholar 

  34. Soil Survey Staff (2014) Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report 51, Version 2.0. R. Burt, and Soil Survey Staff, editors, Whashington, Department of Agriculture, Natural Resources Conservation Service

  35. Steffens D, Leppin T, Luschin-Ebengreuth N, Yang Z, Schubert S (2010) Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil-testing methods. J Plant Nutr Soil Sci 17:765–771. https://doi.org/10.1002/jpln.201000079

    CAS  Article  Google Scholar 

  36. TableCurve 5.0. Systat Software Inc. (2002) Automated curve fitting and equation discovery. Systat Software Inc., San Jose, CA, USA. www.systat.com

  37. Thien SJ, Myers R (1992) Determination of bioavailable phosphorus in soil. Soil Sci Soc Am J 56:814–818. https://doi.org/10.2136/sssaj1992.03615995005600030023x

    CAS  Article  Google Scholar 

  38. Van Lierop W (1990) Soil pH and lime requirements determination. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. SSSA Book Ser. 3. SSSA, Madison, pp 73–126

    Google Scholar 

  39. Walker TW, Adams AFR (1958) Studies in soil organic matter. I. Influence of phosphorus content of parent materials on an accumulation of carbon, nitrogen, sulfur and organic phosphorus in Grassland soils. Soil Sci 85:307–318. https://doi.org/10.1097/00010694-195,806,000-00004

    CAS  Article  Google Scholar 

  40. Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–38

    CAS  Article  Google Scholar 

  41. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) GraphPad Software Inc. San Diego www.graphpad.com

  42. Wyngaard N, Vidaurreta A, Echeverria HE, Picone LI (2013) Dynamics of phosphorus and carbon in the soil particulate fraction under different management practices. Soil Sci Soc Am J 77:1584–1590. https://doi.org/10.2136/sssaj2013.04.0137

    CAS  Article  Google Scholar 

  43. Wyngaard N, Cabrera ML, Jarosch KA, Bünemann EK (2016) Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biol Biochem 96:107–118. https://doi.org/10.1016/j.soilbio.2016.01.022

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank INTA for providing funding, on-farm network trials, and facilities. Stefania Appelhans holds a PhD scholarship, and Flavio Gutierrez-Boem and Octavio Caviglia are members of CONICET, the research council of Argentina.

Funding

Financial support was provided by INTA PNCER 2342.

Author information

Affiliations

Authors

Contributions

Appelhans Stefania C.: conceptualization, data collection, data analysis, results interpretation, and manuscript preparation

Barbagelata Pedro A.: data collection, results interpretation, and manuscript preparation

Melchiori Ricardo J.M.: conceptualization, results interpretation, and manuscript preparation

Gutierrez Boem Flavio H.: results interpretation and manuscript preparation.

Caviglia Octavio P.: conceptualization, results interpretation, and manuscript preparation.

Corresponding author

Correspondence to Stefania C. Appelhans.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Appelhans, S.C., Barbagelata, P.A., Melchiori, R.J.M. et al. Is the Lack of Response of Maize to Fertilization in Soils with Low Bray1-P Related to Labile Organic Phosphorus?. J Soil Sci Plant Nutr 21, 612–621 (2021). https://doi.org/10.1007/s42729-020-00387-8

Download citation

Keywords

  • Relative yield
  • Labile P
  • Fertilizer recommendation