Skip to main content

Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela

Abstract

To identify the main edaphic variables most correlated to banana productivity in Venezuela and explore the development of an empirical correlation model to predict this productivity based on soil characteristics. Six agricultural fields located in two of the main banana production areas of Venezuela were selected. The experimental sites were in large farms (≥ 50 ha) with four productivity levels in “Gran Nain” bananas, with an area of 4 ha for each of four productive levels: High - High, High - Low, Low - High, and Low - Low. Sixty sampling points were used to characterize the soils under study. Additionally, a Productivity Index (PI) based on three different biometric data on plant productivity was proposed. Through hierarchical statistical analysis, the first 16 soil variables that best explained the PI were selected. Thus, five multiple linear regression models were estimated, using the stepwise regression method. Subsequently, a performance analysis was used to compare the prediction quality range and the error associated with the number of soil variables selected for the proposed models. The selected model included the following soil variables: Mg, penetration resistance, total microbial respiration, bulk density, and omnivorous free-living nematodes. These variables explain the PI with an R2 of 0.55, the mean absolute error (MAE) of 0.8, and the root of the mean squared error (RMSE) of 1.0. The five selected variables are proposed to characterize the soil Productivity Index in banana and could be used in a site-specific soil management program for the banana areas of Venezuela.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Acevedo-Opazo C, Valdés-Gómez H, Taylor JA, Avalo A, Verdugo-Vásquez N, Araya M, Jara-Rojas F, Tisseyre B (2013) Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field. Agric Water Manag 124:58–68. https://doi.org/10.1016/j.agwat.2013.03.018

    Article  Google Scholar 

  2. Addinsoft TM (2010) XLSTAT software. version 5.03. Addinsoft. Barcelona. Spain. http://www.xlstat.es

  3. Aguirre ES, Piraneque N, Menjivar Flores CJ (2012) Relationship between soil and edaphoclimatic properties and the black Sigatoka incidence (Mycosphaerella fijiensis Morelet) in the Banana Region of Magdalena - Colombia. Rev Investig Agrar Ambient 3:1–13. https://doi.org/10.22490/21456453.970

    Article  Google Scholar 

  4. Alef K (1995) Field methods. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 464–470

    Google Scholar 

  5. Araya M, Blanco F (2001) Changes in the stratification and spatial distribution of the banana (Musa AAA cv. Grand Naine) root system of poor regular and good developed plants. J Plant Nutr 24:405–405. https://doi.org/10.1081/PLN-100107306

    Article  Google Scholar 

  6. Araya-Alman M, Leroux C, Acevedo-Opazo C, Guillaume S, Valdés-Gómez H, Verdugo-Vásquez N, Pañitrur-De la Fuente C, Tisseyre B (2019) A new localized sampling method to improve grape yield estimation of the current season using yield historical data. Precis Agric 20:445–459. https://doi.org/10.1007/s11119-019-09644-y

    Article  Google Scholar 

  7. Bautista LG, Bolaños MM, Massae Asakawa N, Villegas EB (2015) Plantain Musa AAB simmonds phytonematodes response to soil integrated management strategies and nutrition. Rev Luna Azul 40:69–84. https://doi.org/10.17151/luaz.2015.40.6

    Article  Google Scholar 

  8. Blanco-Sepúlveda R (2009) Relationship between bulk density and mechanical resistance as an indicator of soil compaction. Agrociencia 43:231–239

    Google Scholar 

  9. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19. https://doi.org/10.1007/BF00324627

    Article  PubMed  Google Scholar 

  10. Breiman L, Last M, Rice J (2003) Random forests: finding quasars. In: Statistical Challenges in Astronomy. Springer, New York. https://doi.org/10.1007/0-387-21529-8_16

    Chapter  Google Scholar 

  11. Brinford G, Blackmer A, Cerrato M (1992) Relationship between corn yields and soil nitrate late spring. Agron J 84:59–63. https://doi.org/10.2134/agronj1992.00021962008400010012x

    Article  Google Scholar 

  12. Calero J, Aranda V, Montejo-Raez A, Martin-Garcia JM (2018) A new soil quality index based on morpho-pedological indicators as a site-specific web service applied to olive groves in the Province of Jaen (South Spain). Comput Electron Agric 146:66–76. https://doi.org/10.1016/j.compag.2018.01.016

    Article  Google Scholar 

  13. Cassel DK, Nielsen DR (1986) Field capacity and available water capacity. Methods of soil analysis: part 1—physical and mineralogical methods. American Society of Agronomy-Soil Science Society of America, Madison. https://doi.org/10.2136/sssabookser5.1.2ed.c36

  14. Castañeda DA, Jaramillo DF, Cotes Torres JM (2010) Components of the spatial variability in site-specific management in banana. Pesqui Agropecu Bras 45:836–845. https://doi.org/10.1590/S0100-204X2010000800009

    Article  Google Scholar 

  15. Castilla-Díaz E, Millán-Romero E, Mercado-Ordoñez J, Millán-Páramo C (2017) Relation of soil parameters on the diversity and spatial distribution of free-living nematodes. Tecnol Marcha 30:24–34. https://doi.org/10.18845/tm.v30i3.3270

    Article  Google Scholar 

  16. Delgado E, Gómez N, González O, Marín C (2008) On farm evaluation of effect of high plant density on plantain (Musa AAB cv. Subgroup Horn plantain), Obispo County, Barinas state, Venezuela. Rev Fac Agron (LUZ) 25:603–616

    Google Scholar 

  17. Delgado E, Rosales F, Trejos J, Villalobos M, Pocasangre L (2010a) An index of soil quality and health for banana plantations in four countries of Latin America and the Caribbean. Bioagro 22:53–60

    Google Scholar 

  18. Delgado E, Trejos J, Villalobos M, Martínez G, Lobo D, Carlos Rey J, Rodríguez G, Rosales FE, Pocasangre LE (2010b) Determination of a soil quality and health index for banana plantations in Venezuela. Interciencia 35:927–933

    Google Scholar 

  19. Delgado EJ, Carlos Rey J, Martínez G, Lobo Luján D, Sapuky M, Chacin M, Nuñez E, Pocasangre L, Rosales F (2010c) Propiedades del suelo que determinan el vigor del banano (Musa AAA) de producción local en Venezuela. XIX Reunión Internacional ACORBAT Medellín, Colombia, nov 8–12 (In Spanish)

  20. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  21. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

    CAS  Article  PubMed  Google Scholar 

  22. Fageria NK (2009) The use of nutrients in crop plants. CRC Press, Florida

    Google Scholar 

  23. FAO (2019) Banana Market Review and Banana Statistics 2018. Rome. http://www.fao.org/economic/est/est-commodities/bananas/en./ Accessed Jan 12 2020

  24. Ferris H, Venette RC, Lau SS (1996) Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Appl Soil Ecol 3:161–175. https://doi.org/10.1016/0929-1393(95)00071-2

    Article  Google Scholar 

  25. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232. https://doi.org/10.1214/aos/1013203451

    Article  Google Scholar 

  26. Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22:1365–1381. https://doi.org/10.1002/sim.1501

    Article  PubMed  Google Scholar 

  27. Gauggel CA, Sierra F, Arévalo G (2005) The problem of banana root deterioration and its impact on production. In: D.W. and F.E. Rosales (eds) Banana root system: towards a better understanding for its productive management: Proceedings of an international symposium. International Network for the Improvement of Banana and Plantain, Montpellier, France, pp 13-22

  28. González-Pedraza AF, Atencio J, Cubillan K, Almendrales R, Ramirez L, Barrios O (2014) Microbial activity in soils cultivated with plantain (Musa AAB plantain subgroup cv. Horn) with different vigor of plants. Rev Fac Agron (LUZ) 31:526–538

    Google Scholar 

  29. Hernández Y, Marín M, García J (2007) Response to the plantain (Musa AAB cv. Horn) yield as a function of the mineral nutrients and its phenologycal cycle. Part I. Growth and production. Rev Fac Agron (LUZ) 24:607–626

    Google Scholar 

  30. Horton JH, Newsom DW (1953) A rapid gas evolution method for calcium carbonate equivalent in liming materials. Soil Sci Soc Am J 17:414–415

    CAS  Article  Google Scholar 

  31. IANAS (Interamerican Network of Academies of Sciences. Mexico) (2017) Retos y oportunidades de la seguridad alimentaria y nutricional en las Américas: El punto de vista de las Academias de Ciencias. IANAS, México (In Spanish)

    Google Scholar 

  32. Irizarry H, Rivera E, Rodriguez JA (1990) Response of bananas (Musa-acuminata. AAA) to magnesium fertilization in an Ultisol. J Agric Univ Puerto Rico 74:419–426

    Article  Google Scholar 

  33. Joergensen RG (1995) Microbial biomass. In: Nannipieri AK (ed) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 375–417

    Chapter  Google Scholar 

  34. Martínez M, Ortega R, Janssens M, Fincheira P (2018) Use of organic amendments in table grape: effect on plant root system and soil quality indicators. J Soil Sci Plant Nutr 18:100–112. https://doi.org/10.4067/S0718-95162018005000501

    Article  Google Scholar 

  35. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    CAS  Article  Google Scholar 

  36. Millán E, Castilla D, Millán C (2016) Comunidades de nematodos de vida libre del suelo y su correspondencia con la calidad. Ingenieria Reg 16:25–34 (In Spanish). https://doi.org/10.25054/22161325.1282

    Article  Google Scholar 

  37. Miller A (2002) Subset selection in regression. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420035933

    Book  Google Scholar 

  38. Olivares BO (2018) Tropical rainfall conditions in rainfed agriculture in Carabobo, Venezuela. Lgr Lif Sci J 27:86–102. https://doi.org/10.17163/lgr.n27.2018.07

    Article  Google Scholar 

  39. Olivares BO, Cortez A, Lobo D, Parra R, Rey J, Rodriguez M (2017) Evaluation of agricultural vulnerability to drought weather in different locations of Venezuela. Rev Fac Agron (LUZ) 34:103–129

    Google Scholar 

  40. Olivares BO, Hernández R, Coelho R, Molina JC, Pereira Y (2018) Analysis of climate types: main strategies for sustainable decisions in agricultural areas of Carabobo, Venezuela. Sci Agropecu 9:359–369. https://doi.org/10.17268/sci.agropecu.2018.03.07

    Article  Google Scholar 

  41. Pattison T, Smith L, Moody P, Armour J, Badcock K, Cobon J, Rasiah V, Lindsay S, Gulino L (2005) Banana root and soil health project - Australia. In: D.W. and F.E. Rosales (eds) Banana root system: towards a better understanding for its productive management. Proceedings of an International Symposium International Network for the Improvement of Banana and Planta. Montpellier, France, pp 149-165

  42. Pla I (1983) Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Rev Fac Agron 32:1–91 (In Spanish)

    Google Scholar 

  43. Primpas I, Tsirtsis G, Karydis M, Kokkoris GD (2010) Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol Indic 10:178–183. https://doi.org/10.1016/j.ecolind.2009.04.007

    CAS  Article  Google Scholar 

  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  45. Rey JC, Chacín M, Sapuky M, Núñez M, Martínez G, Rodríguez G, Espinoza J, Arturo M, Pocasangre L, Delgado E, Rosales F (2006) Land suitability for banana in Venezuelan soils and its relation to productivity. XVII Reunión Internacional ACORBAT: Banano un negocio sustentable. Joinville. Santa Catarina, Brasil. Nov 15–20. p. 362

  46. Rey JC, Martínez G, Lobo D, Trejos J, Pocasangre L, Rosales F (2009) Aspectos sobre calidad y salud de suelos bananeros en Venezuela. Producción Agropecuaria 2:52–55 (In Spanish)

    Google Scholar 

  47. Rodríguez V, Malavolta E, Sánchez A, Lavoranti O (2004) Reference nutritional balance of soils and leaves in the Horn plantain crop. Bioagro 16:39–46

    Google Scholar 

  48. Rodríguez V, Silva A, Rodríguez O (2005) Nutritional balance and number of leaves as variables for yield prediction of the Horn plantain. Pesqui Agropecu Bras 40:175–177. https://doi.org/10.1590/S0100-204X2005000200011

    Article  Google Scholar 

  49. Rodríguez G, Núñez MC, Lobo D, Martínez G, Rey JC, Espinoza J, Muñoz N, González D, Rosales F, Pocasangre L, Delgado E (2006) Banana root health in lots with different productivity levels in a soil at the oriental coast of Maracaibo Lake, Venezuela. XVII Reunión Internacional ACORBAT: Banano un negocio sustentable. Joinville, Santa Catarina, Brasil. Nov 15–20. p. 355

  50. Rosales FE, Pocasangre LE, Trejos J, Serrano E, Peña W (2008) Guía de Diagnóstico de la Calidad y Salud de Suelos. Bioversity International, Montpellier (In Spanish)

    Google Scholar 

  51. Salas A, Achinelly MF (2020) Community structure of soil nematodes associated with the rhizosphere of Solanum Lycopersicum in a major production area in Argentina: a case study among agroecosystem types. J Soil Sci Plant Nutr 20:43–54. https://doi.org/10.1007/s42729-019-00099-8

    CAS  Article  Google Scholar 

  52. Segura RA, Serrano E, Pocasangre L, Acuna O, Bertsch F, Stoorvogel JJ, Sandoval JA (2015) Chemical and microbiological interactions between soils and roots in commercial banana plantations (Musa AAA. cv. Cavendish). Sci Hortic 197:66–71. https://doi.org/10.1016/j.scienta.2015.10.028

    CAS  Article  Google Scholar 

  53. Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. NRCS, Washington DC

    Google Scholar 

  54. Sumner ME (1990) Advances in the use and application of plant analysis. Commun Soil Sci Plant Anal 21:1409–1430. https://doi.org/10.1080/00103629009368313

    CAS  Article  Google Scholar 

  55. Trujillo-Narcía A, Rivera-Cruz MC, Magaña-Aquino M (2019) The burning of sugarcane plantation in the tropics modifies the microbial and enzymatic processes in soil and rhizosphere. J Soil Sci Plant Nutr 19:906–919. https://doi.org/10.1007/s42729-019-00089-w

    CAS  Article  Google Scholar 

  56. USDA (1995) Soil survey laboratory methods manual. USDA, USA

    Google Scholar 

  57. Vaquero MR (2005) Soil physical properties and banana root growth. In: Turner DW, Rosales FE (eds) Banana root system: towards a better understanding for its productive management: proceedings of an international symposium. International Network for the Improvement of Banana and Plantain, Montpellier, pp 125–131

    Google Scholar 

  58. Vega-Ávila A, Medina E, Paroldi H, Toro M, Baigori M, Vázquez F (2018) Bioindicators of soil quality of open shrubland and vineyards. J Soil Sci Plant Nutr 18:1065–1079. https://doi.org/10.4067/S0718-95162018005003002

    Article  Google Scholar 

  59. Villarreal-Núñez J, Pla-Sentis I, Agudo-Martínez L, Villaláz-Perez J, Rosales F, Pocasangre L (2013) Soil quality indexes in areas cultivated with banana in Panama. Agron Mesoam 24:301–315

    Article  Google Scholar 

  60. Viloria JA, Pineda C, López D, Gabaldón O (2003) Land suitability of the Taguaiguay irrigation system (Aragua-Venezuela) for sugarcane and banana. Agron Trop 53:189–208

    Google Scholar 

  61. Weaver F, Angle J, Bottomley P (1994) Methods of soil analysis. Part 2. Microbiological and biochemical properties. Book Series Number 5. Soil Sci Soc Am, USA

Download references

Funding

The authors recognize the financial support for international mobility of the Ibero-American scholarship program (2018–2019) of Banco Santander. Also, by project “Technological innovations for the management and improvement of the quality and health of banana soils in Latin America and the Caribbean” financed by FONTAGRO and coordinated by Bioversity International (before INIBAP) and project SHui (European Commission Grant Agreement number: 773903).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barlin Orlando Olivares.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.20350/digitalCSIC/12587.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 7 Means values ± standard deviations for the variables selected in model 3: Mg, magnesium content; PR, penetration resistance; TMR, total microbial respiration; BD, soil bulk density; NVLomc, omnivorous free-living nematodes in the six banana sites included in the study. All soil properties correspond to horizon 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olivares, B.O., Araya-Alman, M., Acevedo-Opazo, C. et al. Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. J Soil Sci Plant Nutr 20, 2512–2524 (2020). https://doi.org/10.1007/s42729-020-00317-8

Download citation

Keywords

  • Musaceae
  • Free-living nematodes
  • Penetration resistance
  • Bulk density
  • Soil quality
  • Total microbial respiration