Biological Properties and Greenhouse Gas Emissions in Two Different Land Uses of an Aquand

Abstract

Aquands have a shallow profile and an impermeable layer that restricts water movement. Land use changes alter the physical structure of Aquands and soil air fluxes. The impacts of land use changes on the soil’s biological activity, nutrients’ dynamics, and the production of greenhouse gases (GHG) have not been investigated in Aquands. We investigated an Aquand soil under a second-growth native forest (sNF) and unmanaged naturalized grassland (NG) in southern Chile (41° S). Soil samples from each land use were taken in different seasons and analyzed in a laboratory to determine the potential soil respiration, N mineralization, denitrification, and nitrate reductase activity. GHG fluxes (CO2, N2O, and CH4) were collected from static chambers on the soil’s surface. Soil respiration rates were higher in the sNF, but were temporally variable in NG. Nitrogen dynamics was not as clearly influenced by soil use changes. CO2 emissions varied seasonally and were always higher in the NG during the summer, suggesting a dependency on temperature and the changing thermal profile, while the N2O and CH4 in Aquands showed no evident spatiotemporal effects related to the historical land use change. Seasonal dynamics of water and air in the profile of Aquands are relevant for the biological processes related to C and N transformations. Land use change amplifies the production of CO2 under favorable conditions, but the biological activity of soil and nutrient dynamics of Aquands respond more to changes in soil organic matter quality than to seasonal variation in the edaphic environment.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alef K (1995a) Nitrogen mineralization in soils. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 235–237

    Google Scholar 

  2. Alef K (1995b) Assay of dissimilatory nitrate reductase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 283–284

    Google Scholar 

  3. Besoain E (1985) Los suelos. In: Tosso EJ (ed) Suelos volcánicos de Chile. Ministry of Agriculture, Santiago 723 p

    Google Scholar 

  4. Butterbach-Bahl K, Dannenmann M (2011) Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Environ Sustain 3(5):389–395

    Article  Google Scholar 

  5. Chen W, Wolf B, Zheng X, Yao Z, Butterbach-Bahl K, Brüggemann N, Han S, Liu C, Han X (2013) Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmos Environ 64:141–149

    Article  CAS  Google Scholar 

  6. Dalal R, Allen D (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407

    Article  CAS  Google Scholar 

  7. De Bruijn AMG, Butterbach-Bahl K, Blagodatsky S, Grote R (2009) Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agric Ecosyst Environ 133:196–207

    Article  CAS  Google Scholar 

  8. Dec D, Zúñiga F, Thiers O, Paulino L, Valle S, Villagra V, Tadich I, Horn R, Dörner J (2017) Water and temperature dynamics of Aquands under different uses in southern Chile. J Soil Sci Plant Nutr 17(1):141–154

    CAS  Google Scholar 

  9. Dörner J, Dec D, Peng X, Horn R (2009) Efecto del cambio de uso en la estabilidad de la estructura y la función de los poros de un andisol (typic hapludand) del sur de Chile. J Soil Sci Plant Nutr 9(3):190–209

    Google Scholar 

  10. Dörner J, Dec D, Thiers O, Paulino L, Zúñiga F, Valle S, Martinez O, Horn R (2016) Spatial and temporal variability of physical properties of Aquands under different land uses in southern Chile. Soil Use Manag 32:411–421

    Article  Google Scholar 

  11. Dörner J, Horn R, Dec D, Wendroth O, Fleige H, Zúñiga F (2017) Land use dependent change of soil mechanical strength and resilience of a shallow volcanic ash soil in southern Chile. Soil Sci Soc Am J 81. https://doi.org/10.2136/sssaj2016.11.0378

  12. Dube F, Zagal E, Stolpe N, Espinosa M (2009) The influence of land-use change on the organic carbon distribution and microbial respiration in a volcanic soil of the Chilean Patagonia. For Ecol Manag 257:1695–1704

    Article  Google Scholar 

  13. Hackl E, Bachmann G, Zechmeister-Boltenstern S (2004) Microbial nitrogen turnover in soils under different types of natural forest. For Ecol Manag 188:101–112

    Article  Google Scholar 

  14. Hagerty S, van Groenigen K, Allison S, Hungate B, Schwartz E, Koch G, Kolka R, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Chang 4:903–906

    Article  CAS  Google Scholar 

  15. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363

    Article  PubMed  Google Scholar 

  16. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  17. Hube S, Alfaro M, Scheers C, Brunk C, Ramírez L, Rowlings D, Grace P (2017) Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil. Agric Ecosyst Environ 238:46–54

    Article  CAS  Google Scholar 

  18. Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosciences, 1(8):543–548

  19. Linn D, Doran J (1984) Aerobic and anaerobic microbial populations in no-till and plowed soils. Soil Sci Soc Am J 48:794–799

    Article  Google Scholar 

  20. Longeri L, Etchevers J, Venegas J (1979) Metodología de perfusión para estudios de nitrificación en suelos. Cienc Investig Agrar 6(4):295–299

    Article  CAS  Google Scholar 

  21. Luo L, White RE, Ball PR, Tillman RW (1996) Measuring denitrification activity in soils under pasture: optimizing conditions for the short-term denitrification enzyme assay and effects of soil storage on denitrification activity. Soil Biol Biochem 28(3):409–417

    Article  CAS  Google Scholar 

  22. Martins C, Nazaries L, Macdonald C, Anderson I, Singh B (2015) Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol Biochem 86:5–16

    Article  CAS  Google Scholar 

  23. Moinet G, Cieraad E, Hunt J, Fraser A, Turnbull M, Whitehead D (2016) Soil heterotrophic respiration is insensitive to change in soil water content but related to microbial access to organic matter. Geoderma 274:68–78

    Article  Google Scholar 

  24. Morales E (2005) Diseño experimental a través del análisis de varianza y modelo de regresión lineal. Editorial Consultora Carolina. Valdivia, Chile, 248

  25. Muñoz C, Paulino L, Monreal C, Zagal E (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chil J Agric Res 70(3):485–497

    Article  Google Scholar 

  26. Novoa R, Villaseca R (1989) Agroclimatic map of Chile. (In Spanish). Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile

  27. Robarge WP, Edwards A, Johnson B (1983) Water and waste water analysis for nitrate via nitration of salicylic acid. Commun Soil Sci Plant Anal 14(12):1207–1215

    Article  CAS  Google Scholar 

  28. Rowell DL (1994) Soil science: methods and applications. Longman Scientific & Technical, Singapore

    Google Scholar 

  29. Sadzawka A, Carrasco M, Grez R, Mora M, Flores H (2006) Métodos de análisis recomendados para los suelos de Chile. Revisión 2006. Instituto de Investigaciones Agropecuarias, Santiago

    Google Scholar 

  30. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim D-G, Zaman M, Tillman RW (2013) Denitrification and N2O: N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–195

    Article  CAS  PubMed  Google Scholar 

  31. Sandoval M, Dörner J, Seguel O, Cuevas J, Rivera D (2012) Métodos de Análisis Físicos de Suelos. Universidad de Concepción. Publicaciones Departamento de Suelos y Recursos Naturales, Chillán, Chile, número 5, p 80

  32. Singh SN, Tyagi L (2009) In: Sheldon AI, Barnhart EP (eds) Nitrous oxide emissions research progressNitrous oxide: sources, sinks and mitigation strategies. Nova Science Publisher, New York, pp 127–150

    Google Scholar 

  33. Thiers O, Gerding V, Lara A, Echeverría C (2007) Variación de la capa freática en un suelo Ñadi bajo diferentes tipos vegetacionales, X Región, Chile. In: Gonda H, Davel M, Loguercio G, Picco OA (eds) Libro de actas de eco reuniones. Primera reunión sobre forestación en la Patagonia EcoForestar 2007. Centro de Investigación y Extensión Forestal Andino Patagónica (CIEFAP), Esquel, pp 259–266

    Google Scholar 

  34. Van Cleemput O, Boeckx P (2002) Measurement of greenhouse gas fluxes. In Lal R (ed) Encyclopedia of Soil Science. Marcel Dekker. New York, pp 626–629

  35. Wakelin SA, Gerard E, van Koten C, Banabas M, O’Callaghan M, Nelson PN (2016) Soil physicochemical properties impact more strongly on bacteria and fungi than conversion of grassland to oil palm. Pedobiologia 59:83–91

    Article  Google Scholar 

  36. Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob Biogeochem Cycles 17(2):1054–1065

    Article  CAS  Google Scholar 

  37. Yanardag I, Zornoza R, Bastida F, Büyükkiliç-Yanardag A, Garcia C, Faz A, Mermut A (2017) Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma 295(1–9):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nelson Beas thanks the Scholarship V/2015/741 from Universidad de Guadalajara, Mexico, which made his Master’s program at the Universidad de Concepción, Chile, possible. Finally, we are also grateful for the hospitality of the landowners Don Alfredo and Sra. Elba, and Katherine Rebolledo for her technical support on analytical determinations in the laboratory.

Funding

This research project received funding from the Fondecyt grant 1130546.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leandro Paulino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beas, N., Zúñiga, F., Dec, D. et al. Biological Properties and Greenhouse Gas Emissions in Two Different Land Uses of an Aquand. J Soil Sci Plant Nutr 19, 368–378 (2019). https://doi.org/10.1007/s42729-019-00039-6

Download citation

Keywords

  • Nothofagus forest
  • Naturalized grassland
  • Soil respiration
  • N mineralization
  • Denitrification
  • Waterlogging