Skip to main content
Log in

Demography and population fitness traits of Spodoptera frugiperda (Lepidoptera: Noctuidae) under elevated temperature and CO2 levels

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The demography and population fitness of fall armyworm, Spodoptera frugiperda was studied by comparing ambient (31 °C + 415 ppm) with elevated (33 °C + 460 ppm and 35 °C + 520 ppm) environmental conditions. The experiments with temperature and CO2 levels were conducted by using Soil Plant Atmosphere Research (SPAR) chamber. The life history data of S. frugiperda was analyzed by age-stage, two-sex life table. Results revealed that developmental time and age-stage-specific survival rate (sxj) of S. frugiperda at age (x) and stage (j) reduced with the increase in temperature and CO2 levels. The fecundity rate and age-stage-specific reproductive rate (vxj) at age x and stage j were recorded highest at 33 °C + 460 ppm but it was significantly reduced at 35 °C + 520 ppm. S. frugiperda reared under an elevated level of 33 °C + 460 ppm showed the highest net reproductive rate (R0), intrinsic (rm), and finite rate of increase (λ) when compared to ambient. However, these fitness traits decreased at the elevated level of 35 °C + 520 ppm. These results suggest that the fitness traits of S. frugiperda were altered concerning the future scenario of global climate change under increasing temperature and CO2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data are available in the manuscript.

Code availability

Not applicable.

References

  • Ahissou BR, Sawadogo WM, Sankara F, Brostaux Y, Bokonon-Ganta AH, Somda I, Verheggen FJ (2022) Annual dynamics of fall armyworm populations in West Africa and biology in different host plants. Sci Afr 16:e01227

    Google Scholar 

  • Ali A, Luttrell RG, Schneider JC (1990) Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 83:725–733

    Google Scholar 

  • Amiri-Jami AR, Sadeghi H, Shoor M (2012) The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2 enriched atmospheres. J Asia Pac Entomol 15:249–253

    Google Scholar 

  • Arora R, Dhawan AK (2013) Climate change and insect pest management. In: Arora R, Dhawan AK (eds) Integrated Pest Management, 1st edn. Scientific Publisher, India, pp 44–60

    Google Scholar 

  • Ashok K, Balasubramani V, Kennedy JS, Geethalakshmi V, Jeyakumar P, Sathiah N (2021a) Evaluating artificial diets for the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) through nutritional indices and an age-stage, two-sex life table approach. Afr Entomol 29:620–634

    Google Scholar 

  • Ashok K, Balasubramani V, Kennedy JS, Geethalakshmi V, Jeyakumar P, Sathiah N (2021b) Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. J Environ Biol 42:1098–1105

    Google Scholar 

  • Bajracharya ASR, Bhat B, Sharma P, Shashank PR, Meshram NM, Hashmi TR (2019) First record of fall army worm Spodoptera frugiperda (J E Smith) from Nepal. Indian J Entomol 81:635–639

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  • Birch L (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Google Scholar 

  • Chapman JW, Williams T, Martínez AM, Cisneros J, Caballero P, Cave RD, Goulson D (2000) Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav Ecol Sociobiol 48:321–327

    Google Scholar 

  • Chen Q, Li N, Wang X, Ma L, Huang JB, Huang GH (2017) Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PloS one 12:e0173380

    PubMed  PubMed Central  Google Scholar 

  • Chi H, Su HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35:10–21

    Google Scholar 

  • Chormule A, Shejawal N, Sharanabasappa CM, Asokan R, Swamy HM (2019) First report of the fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J Entomol Zool Stud 7:114–117

    Google Scholar 

  • Deevey ES (1947) Life tables for natural populations of animals. Q Rev Biol 22:283–314

    PubMed  Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160:1677–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Álvarez EA, Martínez-Zavaleta JP, López-Santiz EE, Barrera E, Larsen J, Del-Val E (2020) Climate change can trigger fall armyworm outbreaks: A developmental response experiment with two Mexican maize landraces. Int J Pest Manag 1–9

  • Du Plessis H, Schlemmer ML, Van den Berg J (2020) The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11:228

    PubMed  PubMed Central  Google Scholar 

  • Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K (2018) Occurrence of the New Invasive Pest, Fall Armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), in the Maize Fields of Karnataka, India. Curr Sci 115:621–623

    CAS  Google Scholar 

  • Garcia AG, Ferreira CP, Godoy WA, Meagher RL (2019) A computational model to predict the population dynamics of Spodoptera frugiperda. J Pest Sci 92:429–441

    Google Scholar 

  • Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M (2015) Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia 177:607–617

    PubMed  Google Scholar 

  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PloS one 11:e0165632

    PubMed  PubMed Central  Google Scholar 

  • Golizadeh ALI, Kamali K, Fathipour Y, Abbasipour H (2007) Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Insect Sci 14:309–316

    Google Scholar 

  • Guerenstein PG, Hildebrand JG (2008) Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol 53:161–178

    CAS  PubMed  Google Scholar 

  • Guru Pirasanna Pandi G, Chander S, Singh MP, Pathak H (2016) Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc Natl Acad Sci India Sect B Biol Sci 88:57–64

    PubMed  PubMed Central  Google Scholar 

  • Huang Z, Ali S, Ren SX, Wu JH (2010) Effect of Isaria fumosoroseus on mortality and fecundity of Bemisia tabaci and Plutella xylostella. Insect Sci 17:140–148

    Google Scholar 

  • Jiang C, Zhang X, Xie W, Wang R, Feng C, Ma L, Li Q, Yang Q, Wang H (2022) Predicting the potential distribution of the fall armyworm Spodoptera frugiperda (JE Smith) under climate change in China. GECCO 33:e01994

    Google Scholar 

  • Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F (2018) Molecular evidence for the fitness of cotton aphid, Aphis gossypii in response to elevated CO2 from the perspective of feeding behavior analysis. Front Physiol 9:1444

    PubMed  PubMed Central  Google Scholar 

  • Johns CV, Hughes L (2002) Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Glob Change Biol 8:142–152

    Google Scholar 

  • Kakde AM, Patel KG, Tayade S (2014) Role of life table in insect pest management-A review. IOSR-JAVS 7:40–43

    Google Scholar 

  • Kuo MH, Chiu MC, Perng JJ (2006) Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphum maidis (Homoptera: Aphididae) on corn in Taiwan. Appl Entomol Zool 41:171–177

    Google Scholar 

  • Lavanya C, Ashoka J, Sreenivasa AG, Sushila N, Beladhadi BV (2017) Effect of elevated carbon dioxide and temperature on growth, yield and quality parameters of mulberry. Entomol Ornithol Herpetol: Curr Res 6:1–7

    Google Scholar 

  • Lee JH, Stahl M, Sawlis S, Suzuki S, Lee JH (2009) A Potential Risk Assessment of a Dengue Outbreak in North Central Texas, USA (Part 1 of 2) Abundance and Temporal Variation of Dengue Vectors. J Environ Health 71:24–30

    PubMed  Google Scholar 

  • Li N, Chen Q, Zhu J, Wang X, Huang JB, Huang GH (2017) Seasonal dynamics and spatial distribution pattern of Parapoynx crisonalis (Lepidoptera: Crambidae) on water chestnuts. PloS one 12:e0184149

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Huang W, Chi H, Wang C, Hua H, Wu G (2017) Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Sci Rep 7:1–13

    Google Scholar 

  • Maia ADH, Luiz AJ, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518

    PubMed  Google Scholar 

  • Maino JL, Schouten R, Overton K, Day R, Ekesi S, Bett B, Barton M, Gregg PC, Umina PA, Reynolds OL (2021) Regional and seasonal activity predictions for fall armyworm in Australia. CRIS 1:100010

    PubMed  PubMed Central  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478

    Google Scholar 

  • Mironidis GK, Savopoulou-Soultani M (2014) Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ Entomol 37:16–28

    Google Scholar 

  • Montezano DG, Sosa-Gómez DR, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300

    Google Scholar 

  • Morgan D, Walters KFA, Aegerter JN (2001) Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bull Entomol Res 91:47–52

    CAS  PubMed  Google Scholar 

  • NOAA (2019) National Climate Report. https://www.ncdc.noaa.gov/sotc/global/201913. Accessed 14 Mar 2022

  • Ölmez S, Bayhan E, Ulusoy MR (2003) Effect of different temperatures on the biological parameters of Macrosiphum rosae (L.) (Homoptera: Aphididae). J Plant Dis Prot 110:203–208

    Google Scholar 

  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. PNAS 113:7575–7579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang YS, Li SH, Wang RC, Chi H, Liu XY, Wang HY, Li XD, Zheng FQ (2022) Effects of Temperature on the Growth, Survival and Reproduction of Peach Borer Borer, which Feeds on Corn Kernels. J Appl Ecol 33:1652–1660

    Google Scholar 

  • Ramalho FS, Malaquias JB, Lira AC, Oliveira FQ, Zanuncio JC, Fernandes FS (2015) Temperature-dependent fecundity and life table of the fennel aphid Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae). PloS one 10:e0122490

    PubMed  PubMed Central  Google Scholar 

  • Ramasamy M, Das B, Ramesh R (2022) Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J Pest Sci 95:841–854

    Google Scholar 

  • Rawson HM (1995) Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Funct Plant Biol 22:23–32

    Google Scholar 

  • Rogers CE, Marti OG (1994) Effects of age at first mating on the reproductive potential of the fall armyworm (Lepidoptera: Noctuidae). Environ Entomol 23:322–325

    Google Scholar 

  • Satar S, Yokomi R (2002) Effect of temperature and host on development of Brachycaudus schwartzi (Homoptera: Aphididae). Ann Entomol Soc Am 95:597–602

    Google Scholar 

  • Segaiso B, Machekano H, Cuthbert RN, Nyamukondiwa C (2022) Thermal fitness costs and benefits of developmental acclimation in fall armyworm. Sci Afri 17:e01369

    Google Scholar 

  • Sharanabasappa D, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegde K, Navi S, Prabhu ST, Goergen G (2018) First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Horti Eco 24:23–29

    Google Scholar 

  • Shi BK, Huang JL, Hu CX, Hou ML (2014) Interactive effects of elevated CO2 and temperature on rice planthopper, Nilaparvata lugens. J Integr Agric 13:1520–1529

    CAS  Google Scholar 

  • Simmons AM (1993) Effects of constant and fluctuating temperatures and humidities on the survival of Spodoptera frugiperda pupae (Lepidoptera: Noctuidae). Fla Entomol 333–340

  • Simmons AM, Lynch RE (1990) Egg production and adult longevity of Spodoptera frugiperda, Helicoverpa zea (Lepidoptera: Noctuidae), and Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on selected adult diets. Fla Entomol 665–671

  • Sisodiya DB, Raghunandan BL, Bhatt NA, Verma HS, Shewale CP, Timbadiya BG, Borad PK (2018) The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae); first report of new invasive pest in maize fields of Gujarat, India. J Entomol Zool Stud 6:2089–2091

    Google Scholar 

  • Soh BSB, Kekeunou S, Nanga S, Dongmo M, Rachid H (2018) Effect of temperature on the biological parameters of the cabbage aphid Brevicoryne brassicae. Ecol Evol 8:11819–11832

    PubMed  PubMed Central  Google Scholar 

  • Srikanth J, Geetha N, Singaravelu B, Ramasubramanian T, Mahesh P, Saravanan L, Salin KP, Chitra N, Muthukumar M (2018) First report of occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J Sugarcane Res 8:195–202

    Google Scholar 

  • Tamiru A, Getu E, Jembere B, Bruce T (2012) Effect of temperature and relative humidity on the development and fecundity of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Bull Entomol Res 102:9–15

    CAS  PubMed  Google Scholar 

  • Timilsena BP, Niassy S, Kimathi E, Abdel-Rahman EM, Seidl-Adams I, Wamalwa M, Tonnang HE, Ekesi S, Hughes DP, Rajotte EG, Subramanian S (2022) Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci Rep 12:539

    Google Scholar 

  • Tuan SJ, Lee CC, Chi H (2014) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci 70:805–813

    CAS  PubMed  Google Scholar 

  • Ullah MS, Chi H, Gotoh T (2021) Impact of Constant and Fluctuating Temperatures on Population Characteristics of Tetranychus pacificus (Acari: Tetranychidae). J Econ Entomol 114:638–651

    PubMed  Google Scholar 

  • Xie H, Wu S, Yu L, Xu C, He K (2018) Effects of Elevated CO2 and Temperature on two spotted spider Mite (Acari: Tetranychidae) feeding on Maize. J Entomol Sci 53:205–218

    Google Scholar 

  • Yan XR, Wang ZY, Feng SQ, Zhao ZH, Li ZH (2022) Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects 13:981

    PubMed  PubMed Central  Google Scholar 

  • Zacarias DA (2020) Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim Change 161:555–566

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the Department of Science and Technology, Government of India (Project no:

DST/CCP/MRDP/145/2018) is gratefully acknowledged.

Funding

This research was funded by Department of Science and Technology, Government of India through Project no: DST/CCP/MRDP/145/2018.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.V. and S.N.; methodology, A.K., B.V. and J.S.K.; investigation, A.K.; resources, G.V.; data curation, A.K. and J.S.K..; writing—original draft preparation, A.K.; writing—review and editing, B.V.; supervision, S.N.; project administration, G.V.; funding acquisition, G.V. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ashok Karuppannasamy.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

The authors agreed to publish this paper. The data has not been published completely or in part in any other journal.

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppannasamy, A., Venkatasamy, B., Kennedy, J.S. et al. Demography and population fitness traits of Spodoptera frugiperda (Lepidoptera: Noctuidae) under elevated temperature and CO2 levels. Int J Trop Insect Sci 43, 2189–2200 (2023). https://doi.org/10.1007/s42690-023-01122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01122-3

Keywords

Navigation