Skip to main content
Log in

Exploration on the insecticidal role of arcelin from seeds of Phaseolus lunatus against stored pulse insect pest, Callosobruchus maculatus

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The bruchid resistant seeds of Phaseolus lunatus were used to isolate arcelin to demonstrate its prospective insecticidal activity. Consequently, the seed extract of P. lunatus was fractionated into albumin and globulin fractions wherein the haemagglutination titer significantly increased to numerous folds upon assay with trypsinized human-A (Rh negative) erythrocytes in the case of albumin fraction. The haemagglutination activity was inhibited by none of the simple sugars, sugar derivatives and oligosaccharides. Interestingly, bovine submaxillary mucin was found to be a potent inhibitor of the hemagglutination that showed complete inhibition of HA activity at a concentration of 0.01953 mg/ml. The HA activity was totally independent of divalent cations, insensitive to EDTA, stable at pH range 4 to 9 and temperature 10 °C to 60 °C. Arcelin isolated from albumin fraction using carboxy methyl-cellulose was resolved into two distinct protein bands under non-reducing conditions and polypeptides of 27 to 42 kDa under reducing conditions. Periodic acid–Schiff staining confirmed the glycoprotein nature of the isolated arcelin. Artificial seed feeding bioassay with bruchid beetles using 1% partially purified arcelin showed a seed damage of 14% whereas, it was 100% in seeds devoid of arcelin. Interestingly, the weight of larvae obtained from the arcelin incorporated seeds was extensively abridged. The study altogether revealed the fact that the partially purified arcelin from albumin fraction of P. lunatus demonstrate a potent insecticidal effect on the larvae of Callosobruchus maculatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The data sets generated are available from the corresponding author on reasonable request.

References

  • Acosta-Gallegos JA, Quintero C, Vargas J, Toro O, Tohme J, Cardona C (1998) A new variant of arcelin in wild common bean, Phaseolus vulgaris L, from southern Mexico. Genet Resour Crop Evol 45:235–242

    Google Scholar 

  • Allotey J, Oyewo EO (2004) Some aspects of the biology and control of Callosobruchus maculatus (F.) on some stored soyabean, Glycine max (L.) Merr varieties. African J Food Agric Nutr Dev 4:1–13

    Google Scholar 

  • Baldin ELL, Cruz PL, Morando R, Silva IF, Bentivenha JPF, Tozin LRS, Rodrigues TM (2017) Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. J Econ Entomol 110(4):1869–1876

    CAS  PubMed  Google Scholar 

  • Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. BBA 1154:237–282

    CAS  PubMed  Google Scholar 

  • Bekele AJ, Ofori DO, Ali HA (1997) Evaluation of Ocimum Kenyense (Ayobangira) as a source of repellents, toxicants and protectants in storage against three stored product insect pests. J Appl Entomol 121:169–173

    CAS  Google Scholar 

  • Bernal C, Sosa D, Galindo-Castro I, Diez N (2018) Two-dimensional gel electrophoresis to identify arcelins from Phaseolus vulgaris with inmuno-proteomic analysis. Agron Colomb 36:114–119

    Google Scholar 

  • Boyd WC, Reguera RM (1949) Hemagglutinating substances for human cells in various plants. J Immunol 62:333–339

    CAS  PubMed  Google Scholar 

  • Bowles DJ (1990) Defense related proteins in higher plants. Annu Rev Biochem 59:873–907

    CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes and their role in plant defense. Plant Cell 3:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias RO, Cardoso C, Pimentel AC, Damasceno TF, Ferreira C, Terra WR (2018) The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut. Insect Mol Biol 27:46–60

    CAS  PubMed  Google Scholar 

  • Duarte MAG, Cabral GB, Ibrahim AB, Aragão FJL (2018) An overview of the APA locus and arcelin proteins and their biotechnological potential in the control of bruchids. Agri Gene 8:57–62

    Google Scholar 

  • Dubray G, Bezard G (1982) A highly sensitive periodic acid-silver stain for 1, 2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119:325–329

    CAS  PubMed  Google Scholar 

  • Fabre C, Causse H, Mourey L, Koninkw J, Riviére M, Hendriks H, Puzo G, Samama JP, Rouge P (1998) Characterization and sugar-binding properties of arcelin-1 an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J 329:551–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JL, Kami J, Borem A, Gepts P (2023) Sequence analysis of the arcelin-phytohaemagglutinin-α-amylase inhibitor (APA) locus in three phylogenetically arrayed Phaseolus vulgaris clones. Crop Breed Appl Biotechnol 22:e421122415

    Google Scholar 

  • Galbraith W, Goldstein IJ (1972) Phytohemagglutinin of the lima bean (Phaseolus lunatus), isolation, characterization, and interaction with type A blood-group substance. Biochemistry 11:3976–3984

    CAS  PubMed  Google Scholar 

  • Garvey JS, Cremer NE, Sussdorf DH (1979) Methods in immunology, 3rd edn. Benjamin, W.A., Inc, Reading, Massachusetts, p 545

    Google Scholar 

  • Gatehouse AMR, Barbieri L, Stirpe F, Croy RRD (1990) Effects of ribosome inactivating proteins on insect development-differences between Lepidoptera and Coleopteran. Entomol Exp Appl 54:43–51

    CAS  Google Scholar 

  • Gatehouse AMR, Gatehouse JA (1998) Identifying proteins with insecticidal activity: Use of encoding genes to produce insect resistant transgenic crops. Pestic Sci 52:165–175

    CAS  Google Scholar 

  • Gerhardt IR, Paes NS, Bloch C, Mendes PAM, Leite A, Chrispeels MJ, Grossi-de-Sa MF (2000) Molecular characterization of a new arcelin-5 gene. BBA 1490:87–98

    CAS  PubMed  Google Scholar 

  • Girma D (2006) Field infestation by Sitophillus zeamais Mostsch. (Coleopteran: Curculionidae) and its managements on stored maize at Bako Western Ethiopia. Dissertation, Alemaya University

  • Goossens A, Geremia R, Bauw G, Van Montagu M, Angenon G (1994) Isolation and characterization of arcelin-5 proteins and cDNAs. Eur J Biochem 225:787–795

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food Security: The challenge of feeding 9 billion people. Sci 327:812–818

    CAS  Google Scholar 

  • Hartweck LM, Vogelzang RD, Osborn TC (1991) Characterization and comparison of arcelin seed protein variants from common bean. Plant Physiol 97:204–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilda K, Nithya K, Janarthanan S (2018) Genetic resources for arcelin, a stored product antimetabolic protein from various accessions of pulses of Leguminosae. Genet Resour Crop Evol 65:79–90

    Google Scholar 

  • Hilda K, Bhuvaragavan S, Kamatchi R, Meenakumari M, Janarthanan S (2022) Cloning, expression and characterization of arcelin and its impact on digestive enzymes of the stored product insect pest, Callosobruchus maculatus (F.). Pestic Biochem Phys 180:104982

    CAS  Google Scholar 

  • Janarthanan S, Suresh P (2003) Insecticidal potential of wild bean seed protein, arcelin. Nat Prod Radiance 2:243–245

    Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Google Scholar 

  • Korayem AM, Fabbri M, Takahashi K, Scherfer C, Lindgren M, Schmidt O, Ueda R, Dushay MS, Theopold U (2004) A Drosophila salivary gland mucin is also expressed in immune tissues: evidence for a function in coagulation and the entrapment of bacteria. Insect Biochem Mol Biol 34:1297–1304

    CAS  PubMed  Google Scholar 

  • Kumar D, Kalita P (2017) Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6:8

    PubMed  PubMed Central  Google Scholar 

  • Leite YF, Silva LM, Amorim RC, Freire EA, de Melo Jorge DM, Grangeiro TB, Benevides NM (2005) Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). BBA137-145

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Malaikozhundan B, Suresh P, Seshadri S, Janarthanan S (2003) Toxicity assessment of wild bean seed protein-arcelin on Asian armyworm, Spodoptera litura (Fabricius). Indian J Exp Biol 41:1463–1465

    CAS  PubMed  Google Scholar 

  • Minney BHP, Gatehouse AMR, Dobie P, Dendy J, Cardona C, Gatehouse JA (1990) Biochemical bases of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris common bean; A mechanism for arcelin toxicity. J Insect Physiol 36:757–767

    CAS  Google Scholar 

  • Mirkov TE, Wahlstrom JE, Hagiwara K, Finardi-Filho F, Kjemtrup S, Chrispeels MJ (1994) Evolutionary relationships among proteins in the phytohemagglutininin-arcelin-α-amylase inhibitor family of the common bean and its relatives. Plant Mol Biol 26:1103–1113

    CAS  PubMed  Google Scholar 

  • Mourey L, Pédelacq JD, Birck C, Fabre C, Rouge P, Samama JP (1998) Crystal structures of the arcelin-1 dimer from Phaseolus vulgaris at 1.9-Å resolution. J Biol Chem 273:12914–12922

    CAS  PubMed  Google Scholar 

  • Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71:847–855

    CAS  PubMed  Google Scholar 

  • Osborn TC, Alexander DC, Sun SS, Cardona C, Bliss FA (1988a) Insecticidal activity and lectin homology of arcelin seed protein. Sci 240:207–210

    CAS  Google Scholar 

  • Osborn TC, Burow M, Bliss FA (1988b) Purification and characterization of arcelin seed protein from common bean. Plant Physiol 86:399–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paes NS, Gerhardt IR, Coutinho MV, Yokoyama M, Santana E, Harris N, Chrispeels MJ, Grossi de Sa MF (2000) The effect off arcelin1 on the structure of the midgut of bruchid larvae and immunolocalization of the arcelin protein. J Insect Physiol 46:393–402

    CAS  PubMed  Google Scholar 

  • Paiva PMG, Pontual EV, Napoleão TH, Coelho LCBB (2012) Lectins and trypsin inhibitors from plants: biochemical characteristics and adverse effects on insect larvae. Nova Science, New York

    Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectin as plant defense proteins. Plant Physiol 109:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pueyo JJ, Delgado-Salinas A (1997) Presence of alpha-amylase inhibitor in some member of the subtribe Phaseolinae (Phaseoleae: Fabaceae). Am J Bot 84:79–84

    CAS  Google Scholar 

  • Raina AK (1970) Callosobruchus spp infesting stored pulses in India and comparative study of their biology. Indian J Entomol 32:303–310

    Google Scholar 

  • Ryan CA (1990) Proteinase inhibitors in plants genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    CAS  Google Scholar 

  • Sales MP, Gerhardt IR, Grossi de Sa MF, Xavier Filho J (2000) Do legume storage proteins play a role in defending seeds against bruchids. Plant Physiol 124:515–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarauer BL, Gillott C, Hegedus D (2003) Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol Biol 12:333–343

    CAS  PubMed  Google Scholar 

  • Schmale I, Wackers FL, Cardona C, Dorn S (2002) Field infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), parasitoid abundance, and consequences for storage pest control. Environ Entomol 31:859–863

    Google Scholar 

  • Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17:499–504

    CAS  PubMed  Google Scholar 

  • Shade RE, Murdock LL, Foard DE, Pomeroy MA (1986) Artificial seed system for bioassay of cowpea weevil (Coleoptera: Bruchidae) growth and development. Environ Entomol 15:1286–1291

    Google Scholar 

  • Sharaby A (1988) Anti-insect properties of the essential oil of lemon grass, Cymbopogen citrates against the lesser cotton leaf worm Spodoptera exigua (Hbn). Insect Sci Appl 9:77–80

    Google Scholar 

  • Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M (2005) Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 35:947–959

    CAS  PubMed  Google Scholar 

  • Sharon M, Abirami CV, Alagusundaram K (2014) Grain storage management in India. J Postharvest Technol 2(1):12–24

    Google Scholar 

  • Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M (1999) A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci USA 96:5610–5615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Chamankhah M, Visal-Shah S, Hemmingsen SM, Erlandson M, Braun L, Alting-Mees Khachatourians GG, O’Grady M, Hegedus DD (2004) Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem Mol Biol 34:1101–1115

    CAS  PubMed  Google Scholar 

  • Soares EL, Freitasa CD, Oliveira JS, Sousa PA, Sales MP, Barreto-Filho JD, Bandeira GP, Ramos MV (2007) Characterization and insecticidal properties of globulins and albumins from Luetzelburgia auriculata (Allemao) Ducke seeds towards Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 43(4):459–467

    CAS  Google Scholar 

  • Sparvoli F, Bollini R (1998) Arcelin in wild bean Phaseolus vulgaris L. seeds: sequence of variant 6 shows it is a member of the arcelin 1 and arcelin 2 subfamily. Genet Resour Crop Evol 45:383–388

    Google Scholar 

  • Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    CAS  PubMed  Google Scholar 

  • Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, Tempst P, Hultmark D (1996) Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 271:12708–12715

    CAS  PubMed  Google Scholar 

  • Velten G, Rott AS, Cardona C, Dorn S (2007) The inhibitory effect of the natural seed storage protein arcelin on the development of Acanthoscelides obtectus. J Stored Prod Res 43:550–557

    CAS  Google Scholar 

  • Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR (2009) The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18:33–44

    CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (1997a) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci USA 94:6977–6982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Granados RR (1997b) Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 272:16663–16669

    CAS  PubMed  Google Scholar 

  • Yamada T, Hattori K, Ishimoto M (2001) Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58:59–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of infrastructure facility made available from DST-FIST in the Department of Zoology, University of Madras, India.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Hilda Karuppiah, Jebashalomi Vethanayaham: Investigation and Analysis, Methodology, Data curation, Writing-Original draft. Meenakumari Mani, Nivetha Ramanathan: Investigation, Data curation, Validation, Editing-original draft. Bhuvaragavan Sreeramulu: Methodology, Formal analysis, Data curation. Janarthanan Sundaram: Conceptualization, Resources, Supervision, Project administration, Editing.

Corresponding author

Correspondence to Janarthanan Sundaram.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Disclaimer

All the authors declare that the findings and conclusions in the article are those of the authors. The views of the organisations of affiliation or agencies are not represented.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppiah, H., Mani, M., Ramanathan, N. et al. Exploration on the insecticidal role of arcelin from seeds of Phaseolus lunatus against stored pulse insect pest, Callosobruchus maculatus. Int J Trop Insect Sci 43, 2129–2144 (2023). https://doi.org/10.1007/s42690-023-01115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01115-2

Keywords

Navigation