Skip to main content
Log in

The multitrophic system configuration on galls of Macairea radula (Melastomataceae) induced by Palaeomystella oligophaga (Lepidoptera) depends on abiotic events

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The galling insects, host plants and all gall-interacting organisms may depend on environmental conditions and stochasticity to establish and maintain their life cycles and trophic interactions. The micromoth Palaeomystella oligophaga (Lepidoptera: Momphidae) induces galls on Macairea radula (Melastomataceae) and its populations suffer mortality caused by direct and indirect negative interactions. Herein, we hypothesized that (i) the occurrence of galls should be greater during the dry period, when arthropods may depend more on microhabitats during the larval stage. However, (ii) P. oligophaga can face different kinds and frequencies of enemies during different cycles of the year. In addition, (iii) stochastic events such as fire may reduce the occurrence of natural enemies and thus increase the galling insects frequency. We quantified the galling insect survival rates, the proportion and kinds of natural enemies for 16 months (February 2017 – May 2018), detecting two life cycles of these gall-inducing insects by year. We analyzed galls in these 2 cycles and 1 cycle in the second year after a fire event. We confirmed the bivoltine cycle of P. oligophaga, with more galls induced during the first cycle (Feb – May) but with a higher frequency during the second cycle (Aug-Oct), following the post-fire period (Feb – May). The survival rates of P. oligophaga were higher during the post-fire cycle compared to the same period of the previous year, but lower than during the second. The enemies were more abundant during the first cycle. The bivoltine life cycle may constitute a strategy for P. oligophaga to use the galls during different periods of the year because the maturation and emergence of adults depend on the fluctuation of the occurrence of enemies, which varies according to abiotic conditions. Furthermore, this strategy offers shelter and food resources to all other organisms whose life cycles are synchronized with the availability of this microhabitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22:711˗728

  • Araújo GM, Amaral AF, Bruna EM, Vasconcelos HL (2013) Fire drives the reproductive responses of herbaceous plants in a Neotropical swamp. Plant Ecol 214(12):1479–1484

    Google Scholar 

  • Ávila MA, Souza SR, Veloso MDDM, Santos RM, Fernandes LA, Nunes YRF (2016) Structure of natural regeneration in relation to soil properties and disturbance in two swamp forests. Cerne 22(1):1–10

    Google Scholar 

  • Bannister P (2007) Godley review: A touch of frost? Cold hardiness of plants in the southern hemisphere. NZ J Bot 45:1–33

    Google Scholar 

  • Batra LR, Lichtwardt RW (1963) Association of fungi with some insect galls. J Kansas Ent Soc 36(4):262–278

    Google Scholar 

  • Becker VO, Adamski D (2008) Three new cecidogenous Palaeomystella Fletcher (Lepidoptera, Coleophoridae, Momphinae) associated with Melastomataceae in Brazil. Rev Bras Entomol 52(4):647–657

    Google Scholar 

  • Boaventura RS (2007) Vereda: Berço das Águas, Embrapa, Ecodinâmica, Belo Horizonte

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394

    PubMed  Google Scholar 

  • Bonsignore CP, Bernardo U (2018) Effects of environmental parameters on the chestnut gall wasp and its complex of indigenous parasitoids. Sci Nat 105(3):1–14

    CAS  Google Scholar 

  • Bonsignore CP, Vizzari G, Vono G, Bernardo U (2020) Short-Term Cold Stress Affects Parasitism on the Asian Chestnut Gall Wasp Dryocosmus kuriphilus Insects 11(12):841

    PubMed  PubMed Central  Google Scholar 

  • Byler JW, Cobb FW Jr, Parmeter JR Jr (1972) Effects of secondary fungi on the epidemiology of western gall rust. Can J Bot 50(5):1061–1066

    Google Scholar 

  • Campos PT, Costa MCD, Isaias RMDS, Moreira ASFP, Oliveira DCD, Lemos-Filho JPD (2010) Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Botanica Brasilica 24(3):727-733

  • Castro AC, Oliveira DC, Moreira ASF, Isaias RM (2013) Sincronismo de Aspidosperma macrocarpon (Apocynaceae) entre la asignación de recursos y el establecimiento del inductor de agallas Pseudophacopteron sp. (Hemiptera: Psylloidea). Revista de Biología Tropical 61(4):1891-1901

  • Castro-Arellano I, Lacher TE Jr, Willig MR, Rangel TF (2010) Assessment of assemblage-wide temporal niche segregation using null models. Methods Ecol Evol 1(3):311–318

    Google Scholar 

  • Chakravarty P, Hiratsuka Y (1995) Interactions of western gall rust, a hyperparasitic fungus, and a beetle on lodgepole pine. Edited by S. Kaneko, K. Katsuya, M. Kakishima, and Y. Ono. Proceedings of the 4th IUFRO Rusts of Pines Working Party Conference, 2–7 Oct. 1995, Tsukuba, Japan 185–191

  • Currie CR (1995) Dissemination of the mycoparasite, Scytalidium uredinicola, by Epuraea obliquus (Coleoptera: Nitidulidae). Can J Bot 73:1338–1344

    Google Scholar 

  • De Antonio AC, Scalon MC, Rossatto DR (2020) The role of bud protection and bark density in frost resistance of savanna trees. Plant Biol 22(1):55–61

    PubMed  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the Anthropocene. Science 345(6195):401–406

    CAS  PubMed  Google Scholar 

  • Dos Santos AC, da Rocha Montenegro S, Ferreira MC, Barradas ACS, Schmidt IB (2021) Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. J Environ Manage 289

    PubMed  Google Scholar 

  • Fagundes NCA, Ferreira EJ (2016) Veredas (Mauritia Flexuosa palm swamps) in the southeast Brazilian savanna: Floristic and structural peculiarities and conservation status. Neotrop Biol Conserv 11(3):178–183

    Google Scholar 

  • Fei M, Gols R, Harvey JA (2014) Seasonal phenology of interactions involving short-lived annual plants, a multivoltine herbivore and its endoparasitoid wasp. J Anim Ecol 83(1):234–244

    PubMed  Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90(1):14–20

    PubMed  Google Scholar 

  • Fernandes GW, Santos JC (eds) (2014) Neotropical insect galls. Springer, New York

    Google Scholar 

  • Filgueiras TS, Pereira BAS (1987) Efeito de uma geada sobre a flora do cerrado na Reserva Ecológica do IBGE, DF – Brasil. Cadernos de Geociências 2:67–70

    Google Scholar 

  • Forister ML, Emma MP, Scott HB (2019) Declines in insect abundance and diversity: We know enough to act now. Conserv Sci Practice 1

  • Gonçalves RVS, Cardoso JCF, Oliveira PE, Oliveira DC (2021) Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession. Web Ecol 21(1):55–64

    Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado. Vol. I. Origin, Structure, Dynamics and Plant Use. Reta, Ulm

  • Greenacre M (2013) Contribution Biplots. J Comput Graph Stat 22(1):107–22

    Google Scholar 

  • Heim RJ, Heim W, Darman GF, Heinken T, Smirenski SM, Hölzel N (2021) Litter removal through fire–A key process for wetland vegetation and ecosystem dynamics. Sci Total Environ 755

    CAS  PubMed  Google Scholar 

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. J Royal Stat Soc Ser B 30:582–598

    Google Scholar 

  • Isaias RMS, Oliveira DC, Silva RGC, Kraus JE (2014) Developmental anatomy of galls in the Neotropics: arthropods stimuli versus host plant constraints. In Neotropical insect galls (pp. 15-34). Springer, Dordrecht

  • Janzen DH, Hallwachs W (2019) Perspective: Where might be many tropical insects? Biol Conserv 233:102–108

    Google Scholar 

  • Just MG, Hohmann MG, Hoffmann WA (2016) Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol 217(6):631–644

    Google Scholar 

  • Kirkman LK, Goebel PC, West L, Drew MB, Palik BJ (2000) Depressional wetland vegetation types: a question of plant community development. Wetlands 20(2):373–385

    Google Scholar 

  • Kobune S, Kajimura H, Masuya H, Kubono T (2012) Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb Ecol 63(3):619–627

    PubMed  Google Scholar 

  • Koltz AM, Burkle LA, Pressler Y, Dell JE, Vidal MC, Richards LA, Murphy SM (2018) Global change and the importance of fire for the ecology and evolution of insects. Curr Opin Insect Sci 29:110–116

    PubMed  Google Scholar 

  • Landler L, Ruxton GD, Malkemper EP (2019) The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol 19(1):1–8

    Google Scholar 

  • Le S, Josse J, Husson F (2008) FactoMineR: An R Package for Multivariate Analysis. J Stat Software 25(1):1-18. https://doi.org/10.18637/jss.v025.i01

  • Lebel T, Peele C, Veenstra A (2012) Fungi associated with Asphondylia (Diptera: Cecidomyiidae) galls on Sarcocornia quinqueflora and Tecticornia arbuscula (Chenopodiaceae). Fungal diversity 55(1):143–154

    Google Scholar 

  • Lemos-Filho J, Mendonça-Filho CV (2000) Seasonal changes in the water status of three woody legumes from the Atlantic forest, Caratinga, Brazil. J Trop Ecol 21-32

  • Lill JT, Marquis RJ, Cuddington K, Byers JE, Wilson WG (2007) Microhabitat manipulation: ecosystem engineering by shelter-building insects. Ecosys Eng Plants Protists 107-138

  • Majeed W, Rana N, de Azevedo Koch EB, Nargis S (2020) Seasonality and Climatic Factors Affect Diversity and Distribution of Arthropods Around Wetlands. Pakistan J Zool 52(6)

  • Mani MS (1964) Ecology of Plant Galls. Uitgeverij Dr. W. Junk Publishers, Den Haag

  • Martini VC, Raymundo D, Prado-Junior J, Oliveira DC (2021) Bottom-up and top-down forces in plant-gall relationships: testing the hypotheses of resource concentration, associational resistance, and host fitness reduction. Ecol Entomol 46:1072–1081. https://doi.org/10.1111/een.13043

    Article  Google Scholar 

  • Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In Phenological research (pp. 339-359). Springer, Dordrecht

  • Munhoz CBR, Amaral AG (2010) Efeito do fogo no estrato herbáceo-subarbustivo do Cerrado. Efeitos do regime de fogo sobre a estrutura de comunidades de cerrado: resultados do projeto fogo. Brasília: IBAMA/MMA, 93-102

  • Nakazawa T (2020) Species interaction: Revisiting its terminology and concept. Ecol Res 35(6):1106–1113

    Google Scholar 

  • Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113

    CAS  PubMed  Google Scholar 

  • Oliveira DC, Mendonça MS Jr, Moreira ASFP, Lemos-Filho JP, Isaias RMS (2013) Water stress and phenological synchronism between Copaifera langsdorffii (Fabaceae) and multiple galling insects: formation of seasonal patterns. J Plant Interact 8(3):225–233

    Google Scholar 

  • Oliveira OS, Fagundes NCA, Veloso MDDM (2021) Sapling Survival and Growth in a Restoration Project of a Drained Wetland Forest in Southeastern Brazil. Floresta e Ambiente 28(1)

  • Peterson DW, Reich PB (2001) Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol. Appl.11, 914–927 // 20 Bond, W.J. and van Wilgen, B.W. (1996) Fire and Plants, Chapman & Hall)

  • Pilon NA, Cava MG, Hoffmann WA, Abreu RC, Fidelis A, Durigan G (2021) The diversity of post-fire regeneration strategies in the cerrado ground layer. J Ecol 109(1):154–166

    Google Scholar 

  • Preece TF, Dickinson CH (1971) Ecology of leaf surface microorganisms. Ecology of leaf surface microorganisms

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16(1):15–24

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.https://www.R-project.org/

  • Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environ Manage 26(6):675–684

    CAS  PubMed  Google Scholar 

  • Rezende UC, Cardoso JCF, Hanson P, Oliveira DC (2021) Gall traits and galling insect survival in a multi-enemy context. Revista de Biología Trop 69(1)

  • Ribeiro JF, Walter BMT (2008) As principais fitofisiononomias do bioma Cerrado, in Cerrado: ambiente e flora, edited by: Sano, S. M. and de Almeida, S. P., Embrapa Cerrados, Planaltina, online, available at: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/136069/1/fitofisionomias-do-Bioma-Cerrado-2.pdfLast Access: 29 Mar 2023

  • Schoonhoven LM, Van Loon B, van Loon JJ, Dicke M (2005) Insect-plant biology. Oxford University Press on Demand

  • Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects–Nature's most sophisticated herbivores. Basic Appl Ecol 6(5):407–411

    Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int J Plant Sci 173(6):711–723

    Google Scholar 

  • Sourial N, Wolfson C, Zhu B, Quail J, Fletcher J, Karunananthan S, Bandeen-Roche K, Béland F, Bergman H (2010) Correspondence analysis is a useful tool to uncover the relationships among categorical variables. J Clin Epidemiol 63(6):638–646

    PubMed  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18(10):512–522

    Google Scholar 

  • Vidal MC, Murphy SM (2018) Bottom‐up vs. top‐down effects on terrestrial insect herbivores: A meta‐analysis. Ecol Lett 21(1):138-150

  • Weis AE, Walton R, Crego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33(1):467–486

    Google Scholar 

  • Welti EA, Prather RM, Sanders NJ, de Beurs KM, Kaspari M (2020) Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J Anim Ecol 89(5):1286–1294

    PubMed  Google Scholar 

  • Yekwayo I, Pryke JS, Gaigher R, Samways MJ (2018) Only multi-taxon studies show the full range of arthropod responses to fire. PLoS ONE 13(4)

    PubMed  PubMed Central  Google Scholar 

  • Yukawa J (2000) Synchronization of gallers with host plant phenology. Popul Ecol 42(2):105–113

    Google Scholar 

  • Yukawa J, Rohfritsch O (2005) Biology and ecology of gall inducing Cecidomyiidae (Diptera). In: Raman A, Schaefer CW, Withers TM (eds) Biology, Ecology, and Evolution of Gall-Inducing Arthropods. Science Publishers, Enfield, NH, USA, pp 273–304

    Google Scholar 

  • Zeileis A, Meyer D, Hornik K (2007) Residual-based Shadings for Visualizing (Conditional) Independence. J Comput Graph Stat 16(3):507–525

    Google Scholar 

  • Zimowska B, Viggiani G, Nicoletti R, Furmańczyk A, Becchimanzi A, Kot I (2017) First report of the gall midge Asphondylia serpylli on thyme (Thymus vulgaris), and identification of the associated fungal symbiont. Ann Appl Biol 171(1):89–94

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, finance code 001) to the first author, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP). The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) granted a fellowship to D.C. Oliveira.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001, Uiara Costa Rezende, Fundação de Amparo à Pesquisa do Estado de Minas Gerais, FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Coelho de Oliveira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors declare that have no relevant competing interests to declare to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezende, U.C., Cardoso, J.C.F., Gonçalves, P.H.P. et al. The multitrophic system configuration on galls of Macairea radula (Melastomataceae) induced by Palaeomystella oligophaga (Lepidoptera) depends on abiotic events. Int J Trop Insect Sci 43, 2095–2104 (2023). https://doi.org/10.1007/s42690-023-01104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01104-5

Keywords

Navigation