Skip to main content
Log in

Characterization and inhibition kinetics of gut α-amylase from Chilo partellus through Lineweaver- Burk, fractional velocity and combination plots

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Chilo partellus is a serious pest of agricultural crops. The present investigation was carried out to characterize the gut α-amylase from C. partellus and to explore its inhibition kinetics with various α-amylase inhibitors. α-amylase eluted at ve/vo of 1.38–1.48 on sephadex G-100 column chromatography with 15.58 folds purification. It had a single isoform of 65 KDa with an optimum pH of 8.0. It was thermally stable up to 50 °C and showed the highest activity with starch. A critical analysis of Lineweaver–Burk plot showed that the Michaelis constant, Km, of α-amylase for starch was 0.32 mg/ml while Vmax was observed to be 1.47 nmoles of reducing sugars formed/min/ml of enzyme. Among the various chemicals studied, citric acid, salicylic acid, oxalic acid, zinc chloride and calcium nitrate were found to be the potent inhibitors of α-amylase activity. Through a concerted study of the primary and secondary plots of Lineweaver–Burk, fractional velocity and combination plots, it was revealed that citric acid, salicylic acid, oxalic acid, zinc chloride and calcium nitrate caused complete inhibition of α-amylase activity by mixed- non-competitive-uncompetitive mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Aghajari N, Feller G, Gerday C, Haser R (2002) Structural basis of α-amylase activation by chloride. Prot Sci 11:1435–1441

    Article  CAS  Google Scholar 

  • Asadi A, Ghadamyari M, Sajedi RH, Sendi JJ, Tabari M (2010) Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. Bull Insectology 63:175–181

    Google Scholar 

  • Bamaiyi LJ, Joan MI (2011) Management of stem borers on same quality protein maize varieties. J Agric Sci 56:197–205

    Google Scholar 

  • Bode W, Huber R (2000) Structural basis of the endoproteinase protein inhibitor interaction. Biochem Biophys Acta 1477:241–252

    CAS  PubMed  Google Scholar 

  • Boyd JRDW (2002) Digestive enzymes and stylet morphology of Deraeocoriss nigritulus (Uhler) (Hemiptera: Miridae) reflect adaptations for predatory habits. Ann Entomol Soc America 96:667–671

    Article  Google Scholar 

  • Chan WWC (1995) Combination plots as graphical tools in the study of enzyme inhibition. Biochem J 311:981–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RF (2013) The Insects: Structure and Function. Cambridge University Press

    Book  Google Scholar 

  • Da Lage JL, Danchin EGJ, Casane D (2007) Where do animal α-amylases come from? An inter kingdom trip. FEBS Lett 581:3927–3935

    Article  PubMed  Google Scholar 

  • Dejen A, Getu E, Azerefegne F, Ayalew A (2014) Distribution and impact of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) in northeastern Ethiopia. J Entomol Nematol 6:1–13

    Article  Google Scholar 

  • Giri AP, Kachole MV (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochem 49:197–202

    Article  Google Scholar 

  • Guofa Z, Overholt WA, Mochiah MB (2001) Changes in the distribution of lepidopteran maize stemborers in Kenya from the 1950s to 1990s. Int J Trop Insect Sci 21:395–402

    Article  Google Scholar 

  • Jakovljevic D, Vrvic MM, Radulovic M, Hranisavljevic-Jakovljevic M (2001) Fine structural analysis of the fungal polysaccharide pullulan elaborated by Aureobasidium pullulans, CH-1 strain. J Serbian Chem Soc 66:377–383

    Article  CAS  Google Scholar 

  • Kaur R, Gupta AK, Taggar GK (2015) Characterization and inhibition studies of Helicoverpa armigera (Hübner) gut α-amylase. Pest Manag Sci 71:1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Kfir R, Overholt WA, Khan ZR, Polaszek A (2002) Biology and management of economically important lepidopteran cereal stem borers in Africa. Ann Rev Entomol 47:701–731

    Article  CAS  Google Scholar 

  • Kotkar HM, Sarate PJ, Tamhane VA, Gupta VS, Giri AP (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol 55:663–670

    Article  CAS  PubMed  Google Scholar 

  • Laidler KJ, Bunting PS (1973) The Chemical Kinetics of Enzyme Action. Clarendon Press

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Mailafiya DM, Le-Ru BP, Kairu EW, Calatayud PA, Dupas S (2009) Species diversity of lepidopteran stem borer parasitoids in cultivated and natural habitats in Kenya. J Appl Entomol 133:416–429

    Article  Google Scholar 

  • Mehrabadi M, Bandani AR, Kwon O (2011) Biochemical characterization of digestive α-D glucosidase and β-D-glucosidase from labial glands and midgut of wheat bug Eurygaster Maura (Hemiptera: Scutelleridae). Entomol Res 41:81–87

    Article  Google Scholar 

  • Nelson N (1944) A photometric adaptation of Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    Article  CAS  Google Scholar 

  • Paquet V, Croux C, Goma G, Soucaille P (1991) Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 57:212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Ruizy S, Carrillo L, Alfageme A, Ruiz M, Castanera P, Ortego F (2009) The effects of different prey regimes on the proteolytic digestion of nymphs of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Bull Entomol Res 99:487–491

    Article  Google Scholar 

  • Priya S, Kaur N, Gupta AK (2010) Purification, characterization and inhibition studies of α-amylase of Rhyzopertha dominica. Pestic Biochem Physiol 98:231–237

    Article  CAS  Google Scholar 

  • Ravan S, Mehrabadi M, Bandani AR (2009) Biochemical characterization of digestive amylase of wheat bug, Eurygaster maura (Hemiptera: Scutelleridae). Afr J Biotechnol 8:3640–3648

    CAS  Google Scholar 

  • Segel H (1973) Enzyme Kinetics. John Wiley and Sons, New York and London, pp 100–226

    Google Scholar 

  • Sharifloo A, Zibaee A, Sendi JJ, Jahroumi KT (2016) Characterization of a digestive α-amylase in the midgut of Pieris brassicae L. (Lepidoptera: Pieridae). Front Physiol 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Nain V, Lakhanpaul S, Kumar PA (2011) Binding of Bacillus thuringiensis Cry1 A toxins with brush border membrane vesicles of maize stem borer (C. partellus Swinehoe). J Invert Pathol 106:333–335

    Article  CAS  Google Scholar 

  • Singh K, Kayastha AM (2014) α-Amylase from wheat (Triticum aestivum) seeds: Its purification, biochemical attributes and active site studies. Food Chem 162:1–9

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Channappa RK, Deeba F, Nagaraj NJ, Sukavaneasswaran MK, Manjunath TM (2005) Tolerance of Bt Corn (MON810) to Maize stem borer C. partellus (Lepidoptera: Pyralidae). Plant Cell Rep 24:556–560

    Article  PubMed  Google Scholar 

  • Sivakumar S, Mohan M, Franco OL, Thayumanavan B (2006) Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pestic Biochem Physiol 85:155–160

    Article  CAS  Google Scholar 

  • Sorkhabi-Abdolmaleki S, Zibaee A, Hoda H, Fazeli-Dinan M (2014) Purification and characterization of midgut α-amylase in a predatory bug, Andralus spinidens. J Insect Sci 14:1–13

    Article  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: Properties, compartmentalization and function. Comp Biochem Physiol Part B Comp Biochem 109:1–62

    Article  Google Scholar 

  • Terra WR, Ferreira C (2005) 'Biochemistry of digestion' in comprehensive molecular insect science. In: Gilbert LI, Iatrou K and Gill SS (eds) Biochemistry and Molecular Biology, vol 4. Elsevier Press, Amsterdam, pp 171–224

  • Trevelyan WE, Procter DP, Harrison JS (1950) Detection of sugars on paper chromatograms. Nat 166:444–445

    Article  CAS  Google Scholar 

  • Xu W, Huang Q, Wu X, Yu X, Wang X, Tao L (2014) Property of Midgut α-Amylase From Mythimna separata (Lepidoptera: Noctuidae) larvae and Its Responses to Potential Inhibitors In Vitro. J Insect Sci 14:1–5

    Article  CAS  Google Scholar 

  • Yonow T, Kriticos DJ, Ota N, Berg JVD, Hutchison WD (2017) The potential global distribution of Chilo partellus, including consideration of irrigation and cropping patterns. J Pest Sci 90:459–477

    Article  Google Scholar 

  • Yoshino M (1987) A graphical method for determining inhibition parameters for partial and complete inhibitors. Biochem J 248:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zibaee A (2012) Digestive enzymes of large cabbage white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives. Itallian J Zool 79:13–26

    Article  CAS  Google Scholar 

  • Zibaee A, Bandani AR, Kafil M, Ramzi S (2008) Characterization of α-amylase in the midgut and the salivary glands of rice striped stemborer, C. suppressalis Walker (Lepidoptera: Pyralidae). J Asia-Pacific Entomol 11:201–205

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Rajiv Gandhi National Fellowship from University Grant Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaljit Kaur.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Kaur, K., Jindal, J. et al. Characterization and inhibition kinetics of gut α-amylase from Chilo partellus through Lineweaver- Burk, fractional velocity and combination plots. Int J Trop Insect Sci 43, 1987–2000 (2023). https://doi.org/10.1007/s42690-023-01101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01101-8

Keywords

Navigation