Skip to main content
Log in

Integration of insecticidal plant crude protein and the entomopathogenic fungus crude protein against the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Mitotype Asia II-1

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), is a global pest of cotton crops. The whitefly causes severe damage to plants both directly and indirectly due to its high dispersal ability, small size, and high reproductive potential. Besides all the possible factors regarding the outbreak of whitefly populations, the major one is widespread use of insecticides, which not only cause resistance development in whiteflies but also cause mortality in beneficial insects. This study reports the integration of the insecticidal crude protein extracted from Citrullus colocynthis seed, Citrullus colocynthis fruit, Azadirachta indica leaves, Azadirachta indica seed, and insecticidal crude protein of Beauveria bassiana and Metarhizium anisopliae against Bemisia tabaci mitotype Asia II-1 under lab conditions. After 24, 48, 72, and 96 h, mortality percentage was recorded. Leaf dip bioassay method were used. Citrullus colocynthis seed crude protein + A. indica seed crude protein determined the highest rate of mortality (86.3 ± 1.66%) and (82.3 ± 1.66%), followed by C. colocynthis seed crude protein + B. bassiana crude protein (83.3 ± 1.66%) and (80.6 ± 2.88%), and C. colocynthis seed crude protein + A. indica leaf crude protein (80.3 ± 2.88%) and (78.3 ± 1.66%), respectively, after 96 h against the adult and nymphal instars of whitefly mitotype Asia II-1 under control condition. This study would help in the application of integration of plant crude protein and entomopathogenic fungi crude protein as alternative techniques for management of B. tabaci in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J econ Entomol 18(2):265–267

    Article  CAS  Google Scholar 

  • Altimira F, Arias-Aravena M, Jian L, Real N, Correa P, González C, Godoy S, Castro JF, Zamora O, Vergara C, Vitta N (2022) Genomic and experimental analysis of the insecticidal factors secreted by the entomopathogenic fungus Beauveria pseudobassiana RGM 2184. J Fungi 8(3):253

    Article  CAS  Google Scholar 

  • Aslam MQ, Naqvi RZ, Zaidi SSEA, Asif M, Akhter KP, Scheffler BE, Scheffler JA, Liu SS, Amin I, Mansoor S (2022) Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene 820:146200

    Article  CAS  PubMed  Google Scholar 

  • Batool M, Hussain D, Akrem A, Najam-ul-Haq M, Saeed S, Zaka SM, Nawaz MS, Buck F, Saeed Q (2020) Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Biswas KK, Bhattacharyya UK, Palchoudhury S, Balram N, Kumar A, Arora R, Sain SK, Kumar P, Khetarpal RK, Sanyal A, Mandal PK (2020) Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS ONE 15(4):0231886

    Article  Google Scholar 

  • Campos-Esquivel L, Hanson PE, Escudero-Leyva E, Chaverri P (2022) Virulence of native isolates of entomopathogenic fungi (Hypocreales) againstthe “sweetpotato whitefly” Bemisia tabaci(Hemiptera: Aleyrodidae), including the effects of temperature and fungicides. J Invert Pathol 192:107787.

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Ann Rev Entomol 56(1):1–19

    Article  Google Scholar 

  • Diao H, Xing P, Tian J, Han Z, Wang D, Xiang H, Liu T, Ma R (2022) Toxicity of crude toxin protein produced by Cordyceps fumosorosea IF-1106 against Myzus persicae (Sulze). J Invertebr Pathol 194:107825

    Article  CAS  PubMed  Google Scholar 

  • Ellango R, Singh ST, Rana VS, Gayatri Priya N, Raina H, Chaubey R, Naveen NC, Mahmood R, Ramamurthy VV, Asokan R, Rajagopal R (2015) Distribution of Bemisiatabaci genetic groups in India. Envir Entomol 44(4):1258–1264.

  • Ghodake VN, Naik SV, Bhukhanwala KN, Kande KV, Bhor NJ, Patravale VB (2018) Nanoengineered Systems for Biopesticides. In Handbook of Nanomaterials for IndustrialApplications (pp. 243–259). Elsevier.

  • Grzywacz D, Stevenson PC, Mushobozi WL, Belmain S, Wilson K (2014) Theuse of indigenous ecological resources for pest control in Africa. Food Sec (6):71–86.

  • Hameed O, Qayyum MA, Saeed S, Naeem-Ullah U, Ali M (2023) Bio-pesticides as an ecofriendly management of Whitefly, Bemisia tabaci Mitotype Asia II-1. Int J Trop Insect Sci 43(2):547–560

    Article  Google Scholar 

  • Hussain AI, Rathore HA, Sattar MZA, Chatha SAS, Sarker SD, Gilani AH (2014) Citrullus colocynthis (L.) Schrad (bitterapplefruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnophar 155:54–66

    Article  CAS  Google Scholar 

  • Jiang K, Zhang Y, Chen Z, Wu D, Cai J, Gao X (2020) Structural and functional insights into the C-terminal fragmen of insecticidal Vip3A toxin of. Bacillus thuringiensis Toxins 12(7):438

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Heckel DG, Ferre J (2021) Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol 66:121–140

    Article  CAS  PubMed  Google Scholar 

  • Kadir SLA, Yaakob H, Mohamed RZ (2013) Potential anti-dengue medicinal plants: a review. J Nat Med 67:677–689

    Article  Google Scholar 

  • Kanakala S, Ghanim M (2019) Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 14(3):0213946

    Article  Google Scholar 

  • Li Z, Wen W, Qin M, He Y, Xu D, Li L (2022) Biosynthetic mechanisms ofsecondary metabolites promoted by the interaction between endophytes and planthosts. Front Micro (13): 928967.

  • Mahalanobish D, Dutta S, Roy D, Biswas A, Sarkar S, Mondal D, Gaber A, Hossain A, Sarkar PK (2022) Field-evolved resistance and mechanisms in Bemisia tabaci Asia I to a novel pyropene insecticide, afidopyropen, in India. Crop Protect 162:106078

    Article  CAS  Google Scholar 

  • Mannino MC, Davyt-Colo B, Pedrini N (2021) Toxic Secondary Metabolitesand Virulence Factors Expression by Entomopathogenic Fungi during InsectInfection and PotentialImpact as a Tool for Pest Management. Microbes for Sustainable lnsect PestManagement: Hydrolytic Enzyme & Secondary Metabolite (2):121–134.

  • Mazid M, Khan TA, Khan ZH, Quddusi S, Mohammad F (2011) Occurrence,biosynthesis and potentialities of ascorbic acid in plants. Inter J Plant, Ani Environ Sci 1(2): 167–184.

  • Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A (2022) Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress 5:100103

    Article  Google Scholar 

  • Mobolade AJ, Bunindro N, Sahoo D, Rajashekar Y (2019) Traditionalmethods of food grains preservation and storage in Nigeria and India. Ann Agri Sci 64(2):196–205.

  • Mou YN, Ren K, Xu SY, Ying SH, Feng MG (2022) Three small cysteine-freeproteins (CFP1–3) are required for insect-pathogenic lifestyle of Metarhizium robertsii.J Fungi 8(6):606.

  • Naveen NC, Chaubey R, Kumar D, Rebijith KB, Rajagopal R, Subrahmanyam B, Subramanian S (2017) Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the indian subcontinent. Sci Rep 7(1):1–15

    Article  Google Scholar 

  • Nimbalkar NK, Sonkamble MM, Matre YB (2022) Efficacy of differentbiopesticides against major insect pests of chilli (Capsicum annuum L.). J Entomol Res 46(1):77–82.

  • Oliveira CM, Auad AM,Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insectpests on Brazilian agriculture. Crop Prot (56):50–54.

  • Paredes-Montero JR, Zia‐Ur‐Rehman M, Hameed U, Haider MS, Herrmann HW, Brown JK (2020) Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II‐Bemisia tabaci mitotypes in Pakistan. Ecol Evol 10(6):2928–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Polston JE, De P, Barro, Boykin LM (2014) Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manage Sci 70(10):1547–1552

    Article  CAS  Google Scholar 

  • Ponsankar A, Vasantha-Srinivasan P, Thanigaivel A, Edwin ES, Selin-Rani S, Chellappandian M, Senthil-Nathan S, Kalaivani K, Mahendiran A, Hunter WB, Alessandro RT (2018) Response of Spodoptera litura Fab.(Lepidoptera: Noctuidae) larvae to Citrullus colocynthis L.(Cucurbitales: Cucurbitaceae) chemical constituents: larval tolerance, food utilization and detoxifying enzyme activities, vol 101. Physiological and molecular plant pathology, pp 16–28

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis. (Linn) Schrad Parasitology research 103:1383–1390

    Article  PubMed  Google Scholar 

  • Ramzi S, Sahragard A, Sendi JJ, Aalami A (2013) Effects of an extracted lectin from Citrullus colocynthis L.(Cucurbitaceae) on survival, digestion and energy reserves of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). 4:328 Frontiers in Physiology

  • Ramzi S, Sahragard A, Zibaee A (2014) Effects of Citrullus colocynthis agglutinin on intermediary metabolism of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). J Asia Pac Entomol 17(3):273–279

    Article  CAS  Google Scholar 

  • Rasool S, Raza MA, Manzoor F, Kanwal Z, Riaz S, Iqbal MJ, Naseem S (2020) Biosynthesis, characterization and anti-dengue vector activity of silver nanoparticles prepared from Azadirachta indica and Citrullus colocynthis. Royal Soc Open Sci 7(9):200540

    Article  CAS  Google Scholar 

  • Rauf I, Javaid S, Naqvi RZ, Mustafa T, Amin I, Mukhtar Z, Jander G, Mansoor S (2019) In-planta expression of insecticidal proteins provides protection against lepidopteran insects. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

    Article  CAS  PubMed  Google Scholar 

  • Sain SK, Monga D, Hiremani NS, Nagrale DT, Kranthi S, Kumar R, Kranthi KR, Tuteja OP, Waghmare VN (2021) Evaluation of bioefficacy potential of entomopathogenic fungi against the whitefly (Bemisia tabaci Genn.) On cotton under polyhouse and field conditions. J Invertebr Pathol 183:107618

    Article  CAS  PubMed  Google Scholar 

  • Sain SK, Monga D, Mohan M, Sharma A, Beniwal J (2020) Reduction in seedcotton yield corresponding with symptom severity grades of Cotton Leaf CurlDisease (CLCuD) in Upland Cotton (Gossypium hirsutum L.).

  • Shawkey AM, Abdulall AK, Rabeh MA, Abdellatif AO (2014) Enhanced biocidal activities of Citrullus colocynthis aqueous extracts by green nanotechnology. Int J Appl Res Nat Prod 7(2):1–10

    Google Scholar 

  • Suhag A, Yadav H, Chaudhary D, Subramanian S, Jaiwal R, Jaiwal PK (2021) Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci). Insect sci 28(5):1228–1252

    Article  CAS  PubMed  Google Scholar 

  • Sujitha V et al (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325

    Article  PubMed  Google Scholar 

  • Torkey HM, Abou-Yousef HM, Azeiz A, A.Z. and, Hoda EAF (2009) Insecticidal effect of cucurbitacin E glycoside isolated from Citrullus colocynthis against Aphis craccivora. Aust J Basic Appl Sci 3(4):4060–4066

    CAS  Google Scholar 

  • Vanti GL, Katageri IS, Inamdar SR, Hiremathada V, Swamy BM (2018) Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J Biotech 278:20–27

    Article  CAS  Google Scholar 

  • Woo RM, Park MG, Choi JY, Park DH, Kim JY, Wang M, Kim HJ, Woo SD, Kim JS, Je YH (2020) Insecticidal and insect growth regulatory activities ofsecondary metabolites from entomopathogenic fungi, Lecanicillium attenuatum. J App Entomol 144(7):655–663.

  • Yousef M, Garrido-Jurado I, Ruíz-Torres M, Quesada-Moraga E (2017) Reduction of adult olive fruit fly populations by targeting preimaginals in thesoil with the entomopathogenic fungus Metarhiziumbrunneum. J pest Sci (90):45–354.

  • Zhang L, Fasoyin OE, Molnár I, Xu Y (2020) Secondary metabolites fromhypocrealean entomopathogenic fungi: Novel bioactive compounds. Natural Pro Rep 37(9):1181–1206.

Download references

Acknowledgements

The authors are thankful to the institute of Plant Protection, MNS-University of Agriculture, Multan for supporting as financial grant.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Hameed O executed the experiment. Qayyum MA and Saeed S helped in research planning and analytical work. Naeem-Ullah U and Ali M helped in planning and writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Owais Hameed or Mirza Abdul Qayyum.

Ethics declarations

Ethics approval and consent to participate

The authors declare that compliance along ethical standards is followed.

Consent for publication

All authors have agreed to submit the article in International Journal of Tropical Insect Science.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, O., Qayyum, M.A., Saeed, S. et al. Integration of insecticidal plant crude protein and the entomopathogenic fungus crude protein against the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Mitotype Asia II-1. Int J Trop Insect Sci 43, 1701–1713 (2023). https://doi.org/10.1007/s42690-023-01068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01068-6

Keywords

Navigation