Skip to main content
Log in

Assessement of larvicidal and pupicidal activities of Mentha piperita essential oil and effects in biomarkers and morphometric aspects against two mosquito species (Culiseta longiareolata and Culex pipiens)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The present study was undertaken in order to determine the chemical composition of the leaf essential oil of Mentha piperita (Lamiaceae) cultivated in Tebessa (Algeria) and to assess their potential larvicidal and pupicidal activities against two most abundant and investigated mosquito species, Culex pipiens and Culiseta longiareolata (Diptera, Culicidae). GC-MS analysis of the essential oil of the plant revealed 65 compounds, which the major compounds were carvone (52.58%) and DL-limonene (17.40%). The toxicity results showed a strong larvicidal and pupicidal activities for both species with LC50 values of 38.81µL/L; 93.78µL/L and 49.01 µL/L; 115µL/L for larvae and pupae of Cs longiareolata and Cx pipiens respectively. This essential oil affects significantly the biomarkers; it reveals a neurotoxic effect by a decrease in acetylcholinesterase (AChE) activity and activation of detoxification system as showed by an increase in Glutathione S-transferases (GST) activity. The biochemical composition showed that the essential oil affected the energy reserves with a marked effect on proteins and lipids. A delay in developmental time when larvae were exposed to sublethal concentrations of M. piperita EO was observed, followed by significant changes in sex ratio (sex-ratio was skewed towards males).This essential oil would be useful for the development of a new mosquito control agent based on bioactive chemical constituents from plant sources as an alternative to chemical larvicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WB (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Abedinpour N, Ghanbariasad A, Taghinezhad A, Osanloo M (2021) Preparation of Nanoemulsions of Mentha piperita Essential Oil and Investigation of Their Cytotoxic Effect on Human Breast Cancer Lines. Bio Nano Sci 11(2):428–436. https://doi.org/10.1007/s12668-021-00827-4

    Article  Google Scholar 

  • Adams RP (1995) Identification of essential oil components by gas chromatograph/mass spectrometry. Allured Publishing Corporation, Carol Stream, USA

    Google Scholar 

  • Al-Sarar AS, Hussein HI, Abobakr Y, Bayoumi AE, Al-Otaibi MT (2014) Fumigant toxicity and antiacetylcholinesterase activity of Saudi Mentha longifolia and Lavandula dentata Species against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Turkish J Entomol DergiPark 38(1):11–18

  • Anderson JA, Coats JR (2012) Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic Biochem Physiol 102:124–128

    CAS  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan (1999) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil pp 267–271

  • Arun KD, Suresh KJ, Swamy PS (2015) Larvicidal activity and leaf essential oil composition of three species of genus Atalantia from south India. Int J Mosq Res 2(3):25–29

    Google Scholar 

  • Barra A (2009) Factors affecting chemical variability of essential oils: a review of recent developments. Nat Prod Commun 8(4):1147–1154. https://doi.org/10.1177/1934578X0900400827

  • Bouguerra N, Tine-Djebbar F, Soltani N (2018) Effect of Thymus vulgaris L. (Lamiales: Lamiaceae) Essential Oil on Energy Reserves and Biomarkersin Culex pipiens L. (Diptera: Culicidae) from Tebessa(Algeria). J Essent Oil-Bear Plants 21(4):1082–1095

  • Bradford MM (1976) A rapid and sensitive method of the quantitation microgram quantities of Protein utilising the principale dye binding. Analytic Biochem 72:248–254

    CAS  Google Scholar 

  • Brunhes J, Rhaim A, Geoffroy B, Angel G, Hervy JP (1999) Logiciel De L'institut De Recherche Et De Developpement De Montpellier. Paris (FRA); Tunis : IRD; IPT, 1CDROM (Didactiques). ISBN 2-7099-1446-8. France

  • Cavar ZS, Šišková J, Komzáková K, De Diego N, Kaffková K, Tarkowski P (2021) Phenolic Compounds and Biological Activity of Selected Mentha Species. Plants 10:550. https://doi.org/10.3390/plants10030550

    Article  CAS  Google Scholar 

  • Chapman RF (1998) The Insects. Structure and Function fourth ed, Cambridge University Press, Cambridge p 782

  • Chaubey MK (2017) Evaluation of insecticidal properties of Cuminum cyminum and Piper nigrum essential oils against Sitophilus zeamais. J Entomol 14:148–154

    CAS  Google Scholar 

  • Chraibi M, Fikri-Benbrahim K, Ou-Yahia D, Farah A (2017) African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil. J Adv Pharm Technol Res 8(3):86–90

    Google Scholar 

  • Dahouénon-Ahoussi E, Sessou P, Wotto DV, Yéhouénou B, Kinsoudé E, Kpatinvoh B, Soumanou M, Sohounhloué D (2010) Mise au point d’une technologie de production d’une boisson locale «Africa drink» à base d’huiles essentielles de menthe verte et poivrée. Bulletin D’information De La Société Ouest Africaine De Chimie 7:39–53

    Google Scholar 

  • Da Silva Ramos R, Rodrigues AB, Farias AL, Simões RC, Pinheiro MT, Ferreira RM, Costa Barbosa LM, Picanço Souto RN, Fernandes JB, Santos LD, de Almeida SS (2017) Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Scientific World J p. 8 

  • Derwich E, Chabir R, Taouil R, Senhaji O (2011) In-vitro antioxidant activity and GC/MS studies on the leaves of Mentha piperita (Lamiaceae) from Morocco. Int J Pharm Sci Drug Res 3(2):130–136

    CAS  Google Scholar 

  • Draouet C, Hamaidia K, Brakni A, Boutemedjet S, Soltani N (2020) Ethanolic extracts of Borago officinalis L. affect growth, development and energy reserve profile in the mosquito Culex pipiens. J Entomol Res 44(2):203–210. https://doi.org/10.5958/0974-4576.2020.00037.7

  • Dris D, Tine-Djebbar F, Bouabida H, Soltani N (2017) Chemical composition and activity of an Ocimum basilicum essential oilon Culex pipiens larvae: Toxicological, biometrical andbiochemical aspects. S Afr J Bot 113:362–369

    CAS  Google Scholar 

  • Duchateau G, Florkin M (1959) Sur la tréhalosémie des insectes et sa signification. Arch Insect Biochem Physiol 67:306–314

    CAS  Google Scholar 

  • Dzokou VJ, Yana W, Asafor HC, Mouyiche MAN, Tamesse JL (2020) Problematic on the use of synthetic pesticides against insect pests of tomato, (Lycopersicon esculentum Mill.) in Foumbot, Western Region of Cameroon. Plant Cell Environ 2(4):119–125. https://doi.org/10.22271/2582-3744.2020.dec.119

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetic determination of acetylcholesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Google Scholar 

  • Farjana T, Tuno N (2013) Multiple blood feeding and host-seekingbehavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 50:838–846

    PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London and New York

    Google Scholar 

  • Ghosh A, Chowdhury N, Chandra F (2012) Plant Extracts as Potential Mosquito Larvicides. Ind J Med Plant Res 135:581–589

    CAS  Google Scholar 

  • Goldsworthy AC, Mordue W, Guthkelch J (1972) Studies on insect adipokinetic hormone. Gen Comp Endocrinol 18:306–314

    Google Scholar 

  • Goudjil MB (2016) Composition chimique, activité antimicrobienne et antioxydante de trois plantes aromatiques. Thèse en vue de l’obtention d’un diplôme de doctorat (LMD). Universite Kasdi Merbah-Ouargla p. 132

  • Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134(1):7–11

  • Gracindo L, Grisi M, Silva D, Alves R, Bizzo H, Vieira R (2006) Chemical characterization of mint (Mentha spp.) germ plasm at Federal District, Brazil. Rev Bras de Plantas Medicinais 8:5–9

    Google Scholar 

  • Gul M, Zahid M, Ali H (2020) Larvicidal potential of different chromatographic fractions of the n-hexane extract of Artemisia scoparia against the vector mosquito Culex quinquefasciatus. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00250-4

    Article  Google Scholar 

  • Habes D, Kilani-Morakchi S, Aribi N, Farine JP, Soltani N (2006) Boric acid toxicity to the German cockroach, Blattella germanica : Alterations in midgut structure, and acetylcholinesterase and glutathion S-transferase activity. Pestic Biochem Physiol 84:17–24

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Tranferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hamaidia K, Tine-Djebbar F, Soltani N (2018) Activity of a selective insecticide (methoxyfenozide) against two mosquito species (Culex pipiens and Culiseta longiareolata): toxicological, biometrical and biochemical study. Phys Entomol pp 1–9

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    CAS  PubMed  Google Scholar 

  • Jennings W, Shibamoto T (1980) Qualitative analysis of flavor and fragrance volatile by glass capillary gas chromatography. New York Academic Press

  • Kalaivani K, Senthil-Nathan S, Murugesan AG (2012) Biological activity of selected Lamiaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110:1261–1268

    PubMed  Google Scholar 

  • Kizil S, Hasimi N, Tolan V, Kilinc E, Yuksel U (2010) Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turkish J Field Crop 15(2):148–153

  • Korkina L (2016) Metabolic and redox barriers in the skin exposed todrugs and xenobiotics. Expert Opin Drug Metab Toxicol 12:377–388

    CAS  PubMed  Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopesticides Int 4:63–84

    Google Scholar 

  • Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed 1(2):85–88

    PubMed  PubMed Central  Google Scholar 

  • Laghouiter OK, Gherib A, Laghouiter H (2015) Study of the antioxidant activity of essential oils from some cultivated mints in the region of Ghardaïa, El Wahat. Rev Res Studies 1:84–93

    Google Scholar 

  • Lalthazuali, Mathew N (2017) Mosquito repellent activity of volatile oils from selected aromatic plants. Parasitol Res 116:821–825. https://doi.org/10.1007/s00436-016-5351-4

  • Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag Sci 57:548–553

    CAS  PubMed  Google Scholar 

  • Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2014) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 110:2125–2130

    Google Scholar 

  • Mehdi Talebi S, Sheidai M, Ariyanejad F, Matsyura A (2019) Stem anatomical study of some Iranian Marrubium L. species. Biodiversitas 20(9):2589–2595. https://doi.org/10.13057/biodiv/d200922

  • Mezzacappo NF, Souza LM, Inada NM, Dias LD, Garbuio M, Venturini FP, Bagnato VS (2021) Curcumin/d-mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of Aedes aegypti. Pest Manag Sci 77(5):2530–2538. https://doi.org/10.1002/ps.6286

    Article  CAS  PubMed  Google Scholar 

  • Michaelakis A, Papachristos D, Kimbaris A, Polissiou M (2011) Larvicidal evaluation of three Mentha species essential oils and their isolated major components against the West Nile virus mosquito. Hell Plant Prot J 4:35–43

    Google Scholar 

  • Olga S, Fevizi U, Ekrem E (2006) Effects of Cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae L. (Hymenoptera: Ichneumonidae). Belg J Zool 136(1):53–58

  • Olmedo R, Herrera JM, Lucini EI, Zunino MP, Pizzolitto RP, Dambolena JS, Zygadlo JA (2015) Essential oil of Tagetes filifolia against the flour beetle Tribolium castaneum and its relation to acetylcholinesterase activity and lipid peroxidation. Agriscientia 32(2):113–121

    Google Scholar 

  • Owoeye JA, Akawa OB, Akinneye JO, Oladipupo SO, Akomolede OE (2016) Toxicity of Three Tropical Plants to Mosquito Larvae, Pupae and Adults. J Mosq Res 6(16):1–7

    Google Scholar 

  • Park IK (2014) Fumigant toxicity of oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components, including their acetylcholinesterase inhibitory activity, against Japanese Termites (Reticulitermes speratus). Molecules 19:12547–12558

    PubMed  PubMed Central  Google Scholar 

  • Park CG, Jang M, Yoon KA, Kim J (2016) Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind Crops Prod 89:507–513

    CAS  Google Scholar 

  • Pavela R (2008a) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res 22:274–278

    CAS  PubMed  Google Scholar 

  • Pavela R (2008b) Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say. larvae (Diptera: Culicidae). Parasitol Res 102:555–559

    PubMed  Google Scholar 

  • Pavela R, Kaffková K, Kumšta M (2014) Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae). Plant Prot Sci 50:36–42

    Google Scholar 

  • Picollo MI, Toloza ACG, Mougabure C, Zygadlo J, Zerba E (2008) Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79:271–278

    CAS  PubMed  Google Scholar 

  • Rajashekar Y, Raghavendra A, Bakthavatsalam N (2014) Acetylcholinesterase inhibition by biofumigant (coumaran) from leaves of Lantana camara in stored grain and household insect pests. Biomed Res Int 1–6

  • Reegan AD, Stalin A, Paulraj MG, Balakrishna K, Ignacimuthu S, Al-Dhabi NA (2016) In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): A promising molecular target. Med Chem Res 25:1411–1419

    CAS  Google Scholar 

  • Rehimi N, Soltani N (1999) Laboratory evaluation of Alsystin, a chitin synthesis inhibitor, against Culex pipiens pipiens (Dip., Culicidae): effects on development and cuticle secretion. J Appl Entomol 123:437–441

    CAS  Google Scholar 

  • Rocha DK, Matos O, Novo MT, Figueiredo AC, Delgado M, Moiteiro C (2015) Larvicidal Activity Against Aedes aegypti of Foeniculum vulgare Essential Oils from Portugal and Cape Verde. Natural Product 4:677–682

    Google Scholar 

  • Sangeetha AAD, Aiswarya AT, Shana Parvin MT, Smitha MS, Anulal P, Ayoob Afra S, Arunand Dr.Asifa KP (2021) Comparative efficiency of Larvivorous fishes againstCulex mosquitoes: Implications for biological control. Int J Mosq Res 8(3):16–21

    Google Scholar 

  • Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT, Rehder VLG (2004) Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol 35:275–280

    CAS  Google Scholar 

  • Seo SM, Kim J, Kang JS, Koh SH, Ahn YJ, Kang KS, Park IK (2014) Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic Biochem Physiol 113:55–61

    CAS  Google Scholar 

  • Sharma M, Alexander A, Saraf S, Saraf S, Vishwakarma U K, Nakhate KT, Ajazuddin (2021) Mosquito repellent and larvicidal perspectives of weeds Lantana camara L. and Ocimum gratissimum L. found in central India. Biocatal Agric Biotechnol 34:102040. https://doi.org/10.1016/j.bcab.2021.102040

  • Shibko S, Koivistoinen P, Tratyneck C, Hall N, Feidman L (1966) A method for the sequential quantitative separation and determination of protein, RNA, DNA, lipid and glycogen from a single rat liver homogenate or from a subcellular fraction. Anal Biochem 19:415–528

    Google Scholar 

  • Swaroop S, Gilroy AB, Uemura K (1966) Statistical methods in malaria eradication. Genneva: World Health Organisation

  • Tafrihi M, Imran M, Tufail T, Gondal TA, Caruso G, Sharma S, Sharma R, Atanassova M, Atanassov L, Valere Tsouh Fokou P et al (2021) The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 26:1118. https://doi.org/10.3390/molecules26041118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermann SE, Briegel H (1999) Larval growth and biosynthesis of reserves inmosquitoes. J Insect Physiol 45:461–470

    CAS  PubMed  Google Scholar 

  • Vignesh A, Elumalai D, Rama P, Elangovan K, Murugesan K (2016) Chemical composition and larvicidal activity of the essential oil of Glycosmis pentaphylla (Retz.) against three mosquito vectors. Int J Mosq Res 3(2):62–67

  • Vijayaraghavan C, Sivakumar C, Zadda Kavitha M, Sivasubramanian P (2010) Effect of plant extracts on biochemical components of cabbage leaf webber. Crocidolomia Binotalis Zeller J Biopestic 3(1):275–277

    Google Scholar 

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. Ref WHO/CDS/WHOPES/GCPP/ 13:41p

    Google Scholar 

  • Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I (2006) Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 67:1249–1255

    CAS  PubMed  Google Scholar 

  • Yazdani E, Sendi JJ, Aliakbar AR, Senthil Nathan S (2013) Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pestic Biochem Physiol 107:250–257

    CAS  Google Scholar 

  • Yazdani E, Sendi JJ, Hajizadeh J (2014) Effect of Thymus vulgaris L. and Origanum vulgare L. essential oils on toxicity, food consumption, and biochemical properties of lesser mulberry pyralid Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Prot Res 54(1):53–61

  • Yeom HJ, Jung CS, Kang JS, Kim J, Lee JH, Kim DS, Kim HS, Park PS, Kang KS, Park IK (2015) Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J Agric Food Chem 63:2241–2248

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouabida Hayette.

Ethics declarations

Conflicts of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemâa, D., Hayette, B. Assessement of larvicidal and pupicidal activities of Mentha piperita essential oil and effects in biomarkers and morphometric aspects against two mosquito species (Culiseta longiareolata and Culex pipiens). Int J Trop Insect Sci 43, 1897–1909 (2023). https://doi.org/10.1007/s42690-023-01067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01067-7

Keywords

Navigation