Skip to main content
Log in

Molecular analyses of mitochondrial DNA reveal new haplotypes and lineages within Ethiopian honeybees (Apis mellifera)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

A sequence of the COI-COII intergenic region of the mitochondrial DNA of honeybees (Apis mellifera) was conducted to characterize the genetic basis of Ethiopian honeybee populations and elucidate the existing controversial concepts among morphologically identified local honeybee subspecies in Ethiopia. Samples of 204 honeybees were collected from 51 localities from eight regions (Oromia, Amhara, South Nation and Nationality people, Tigray, Afar, Somali, Beneshagul Gumaz and Gambella). Total genomic DNA was extracted from adult worker honeybee and amplified using E2 and H2 universal primers. Sequences of the COI-COII intergenic region generated from a total of 199 honeybees resulted in 15 haplotypes with a diversity value of 0.469. Within genetic variation (73.62%) was higher compared to among the population (26.38%). Lineages Y, A, and O were well separated, in which A and O are the first report for Ethiopia. The presence of four distinct groups of honey bee subspecies (A. m. jemenitica, A. m. litorea, A. m. syriaca, and A. m. iberiensis) could be now evident. A. m. jemenitica, categorized under lineage Y covers a large geographic area (83.43%) as compared to A. m. litorea (7.03%), A. m. syriaca (2.51%) and A. m. iberiensis (2.51%) that are categorized under linage A and O. Honeybees native to Saudi Arabia, carried by the reference subspecies A.m. jemenitica, categorized under lineage O were also accounted for 4.52%. A. m. jemenitica is the first report of honey bee subspecies in Ethiopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Alattal Y, Alsharhi M, AlGhamdi A, Alfaify S, Migdadi H, Ansari M (2014) Characterization of the native honey bee subspecies in Saudi Arabia using the mtDNA COI-COII intergenic region and morphometric characteristics. Bull Insectol 67:31–38

    Google Scholar 

  • Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amssalu B, Nuru A, Radloff S, Hepburn H (2004) Multivariate morphometric analysis of honeybees (Apis mellifera) in the ethiopian region. Apidologie 34:72–81

    Google Scholar 

  • Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Galarza J, Garnery L, Henriques D, Neves CJ, Loucif-Ayad W, Jonhston JS, Pinto MA (2017) Mitochondrial DNA variation of Apis mellifera iberiensis: further insights from a large-scale study using sequence data of the tRNAleu-cox2 intergenic region. Apidologie 48:533–544

    Article  Google Scholar 

  • Cridland J, Tsutsui N, Ramírezv S (2017) The complex demographic history and evolutionary origin of the western honey bee, Apis Mellifera. Genome Biol Evol 9:457–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an Approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Ferreri M, Gao J, Wang Z, Chen L, Su J, Han B (2011) Chinese holstein cattle shows a genetic contribution from native asian cattle breeds: a study of shared haplotypes and demographic history. Asian-Australasian J Anim Sci 24:1048–1052

    Article  Google Scholar 

  • Franck P, Garnery L, Celebrano G, Solignac M, Cornuet J (2000) Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol Ecol 9:907–921

    Article  CAS  PubMed  Google Scholar 

  • Franck P, Garnery L, Loiseauv A, Oldroyd B, Hepburn H, Solignac M, Cornuet J (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430

    Article  CAS  PubMed  Google Scholar 

  • Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnery L, Cornuet J, Solignac M (1992) Evolutionary history of the honeybee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Solignacv M, Celebrano G, Cornuetv JM (1993) A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021

    Article  CAS  Google Scholar 

  • Govindaraju DR (1989) Variation in gene flow levels among predominantly self-pollinated plants. J Evol Biol 2:173–181

    Article  Google Scholar 

  • Hepburn H (1998) In: Radloff S (ed) Honeybees of Africa. Springer Verlag, Berlin, Germany

    Chapter  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Meixner M, Leta M, Koeniger N, Fuchs S (2011) The honey bees of Ethiopia represent a new subspecies of Apis mellifera - Apis mellifera simensis n. ssp. Apidologie 42:425–437

    Article  Google Scholar 

  • Meixner MD, Pinto MA, Bouga M, Kryger P, Ivanova E, Fuchs S (2013) Standard methods for characterising subspecies and ecotypes of Apis mellifera. J Apic Res 52:1–27

    Article  Google Scholar 

  • Munoz I, Stevanovic J, Stanimirovic Z, De la Rua P (2012) Genetic variation of Apis mellifera from Serbia inferred from mitochondrial analysis. J Apic Sci 56:59–69

    Google Scholar 

  • Park D, Jung JW, Choi BS (2015) Uncovering the novel characteristics of asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics 16:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Radloff S, Hepburn H (1997) Multivariate analysis of honeybees, Apis mellifera Linnaeus (Hymenoptera: Apidae), of the Horn of Africa. Afr Entomol 5:57–64

    Google Scholar 

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio J, Guirao-Rico S, Librado P, Ramos-Onsins S, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Ruttner F (1976) African races of honeybees. In: Proc. Int. Beekeeping Congr. 25, Apimondia 1–20

  • Ruttner F (1988) Biogeography and Taxonomy of Honeybee. Springer-Verlag

  • Ruttner F, Tassencourt L, Louveaux J (1978) Biometrical-Statistical analysis of the geographic variaability of Apis mellifera L. Apidologie 9:363–381

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sheppard WS, Meixner MD (2003) Apis mellifera pomonella, a new honey bee subspecies from the Tien Shan mountains of Central Asia. Apidologie 34:367–375

    Article  Google Scholar 

  • Sheppard WS, Arias MC, Grech A, Meixner MD (1997) Apis mellifera ruttneri, a new honeybee subspecies from Malta. Apidologie 28:287–293

    Article  Google Scholar 

  • Smith F (1961) Races of honeybees in East Africa. Bee world)

  • Solorzano C, Szalanski A, Kence M, McKern J, Austin J, Kence A (2009) Phylogeography and population genetics of honey bees (Apis mellifera) from Turkey based on COI-COII sequence data. Sociobiology 53:237–246

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the Neutral Mutation hypothesis by DNA polymorphism Fumio. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan K, Qu Y, Wang Z, Liu Z, Engel M (2016) Haplotype diversity and genetic similarity among populations of the Eastern honey bee from Himalaya-Southwest China and Nepal (Hymenoptera: Apidae). Apidologie 47:197–205

    Article  Google Scholar 

  • Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, Simoes Z, Allsopp M, Kandemir I, De la Rúa P, Pirk C, Webster M (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard W, Smith DR, Suarez A, Weaver D, Tsutsui WD (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Chicago, University of Chicago Press, v. 4.Variability within and among natural populations

  • Zhao W, Tan K, Zhou D, Wang M, Cheng C, Yu Z, Miao Y, He S (2014) Phylogeographic analysis of Apis cerana populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences. Apidologie 45:21–33

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jimma University College of Agriculture and Vet. Medicine and Oromia Agricultural Research Institute (OARI).

Funding

This work was partially funded by Oromia Agricultural Research Institute and Jimma University College of Agriculture and Vet. Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Tadele A. Hunde: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, Writing-Original draft preparation, Visualization. Yosef D: Resource, Supervision, Methodology. Beira H. Meressa: Resource, Supervision, Methodology.

Corresponding author

Correspondence to Beira Hailu Meressa.

Ethics declarations

Conflict of interest

The authors have no conflicting interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunde, T.A., Deneke, Y. & Meressa, B.H. Molecular analyses of mitochondrial DNA reveal new haplotypes and lineages within Ethiopian honeybees (Apis mellifera). Int J Trop Insect Sci 43, 1327–1338 (2023). https://doi.org/10.1007/s42690-023-01046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01046-y

Keywords

Navigation