Skip to main content

Advertisement

Log in

Characterization and critical analysis of parameters that impacts productivity of Aedes mosquito species: breeding preferences of dengue vectors in urban foci of Peshawar, Khyber Pakhtunkhwa, Pakistan

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The present study identifies species composition and breeding preferences of Aedes mosquitoes in container habitats of selected urban localities in Peshawar, Khyber Pakhtunkhwa, Pakistan. Sampling was carried out from 6 sites including Shoba Bazar, Railway Road, Charsadda Road, Kohat Road, Tehkal Payan and Peshawar University Campus. Monthly sampling of mosquito immature was conducted from October 2011 to September 2012. Total of 2852 adult mosquitoes emerged after rearing, consisting of three genera and five species; Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex tritaeniorhynchus and Anopheles stephensi. Aedes was the dominant genus followed by Culex and Anopheles. University campus and Tehkal showed the highest species diversity; the former had the highest species richness while later presented the highest species evenness compared to other localities. Ae. aegypti was not demonstrated in the collection from December to March and in May. Ae. albopictus was recorded in October, April, August and September. Highest abundance of Ae. aegypti was recorded in October corresponding to the lowest average humidity levels whereas Ae. albopictus peaked on September parallel to increased humidity. Aedes aegypti and Aedes albopictus populations showed no significant associations with environmental variables during the study. Immatures of Aedes were recovered from tyres, mud pots, plastic cans, metallic drums and ceramic pots. Tyres were the most productive habitat for Aedes breeding preference ratio (BPR = 1.31) followed by plastic cans (BPR = 1.23). Findings from study pave means for the development and implementation of sustainable dengue control measures through vector management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akram W, Hafeez F, Ullah UN, Kim YK, Hussain A, Lee J (2009) Seasonal distribution and species composition of daytime biting mosquitoes. Entomol Res 39:107–113

    Article  Google Scholar 

  • Ali N, Rasheed B (2009) Determination of species composition of mosquitoes found in palosai stream, Peshawar. Pakistan Entomol 31(1):47–51

    Google Scholar 

  • Arunachalam N, Tewari SC, Thenmozhi V, Rajendran R, Paramasivan R, Manavalan R, Ayanar K, Tyagi BK (2008) Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India. Indian J Med Res 127(4):395–397

    CAS  PubMed  Google Scholar 

  • Aslamkhan M, Salman C (1969) The bionomics of the mosquitoes of the Changa Manga National Forest West Pakistan. Pakistan J Zool 1(2):183–205

    Google Scholar 

  • Aslan B, Karaca I (2012) Comparative diversity of insects in various habitats of Kovada Lake National Park Basin (Isparta, Turkey). Sci Res Essays 7(24):2160–2167

    Google Scholar 

  • Banu S, Hu W, Hurst C, Tong S (2011) Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Tropical Med Int Health 16(5):598–607. https://doi.org/10.1111/j.1365-3156.2011.02734.x

    Article  Google Scholar 

  • Barraud PJ (1934) The Fauna of British India, including Ceylon and Burma. Diptera Vol 5, Family Culicidae. Tribe Megarhinini and Culicini, vol 38. Taylor and Francis

  • Barrera R, Amador M, Clark GG (2006) Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol 43(3):484–492

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760. https://doi.org/10.1371/journal.pntd.0001760

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R, Styer LM, Smith DL, Scott TW, Gething PW, Hay SI (2013) Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors 6:351. https://doi.org/10.1186/1756-3305-6-351

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowell G, Cazelles B, Broutin H, Munayco CV (2011) The influence of geographic and climate factors on the timing of dengue epidemics in Peru, 1994–2008. BMC Infect Dis 11(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  • Cologna R, Armstrong PM, Rico-Hesse R (2005) Selection for virulent dengue viruses occurs in humans and mosquitoes. J Virol 79:859–859

    Article  Google Scholar 

  • Costa EAPA, Santos EM, Correia JC, Albuquerque CMR (2010) Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 54(3)

  • Dom NC, Madzlan MF, Hasnan SNA, Misran N (2015) Water quality characteristics of dengue vectors breeding containers. Int J Mosq Res 3(1):25–29

    Google Scholar 

  • Dziêczkowski A (1972) Badania ilo. Ciowe. limaków buczyn po3udniowozachodniej Polski.(quantitative researches of the beech malacofauna in south-west of Poland). Prace Komisji Biologicznej PTPN 35:243–332

    Google Scholar 

  • Enserink M (2008) Entomology. A mosquito goes global. Science 320(5878):864–866. https://doi.org/10.1126/science.320.5878.864

    Article  CAS  PubMed  Google Scholar 

  • Fay RW (1964) The biology and bionomics of Aedes aegypti in the laboratory. Mosq News 24:300–308

    Google Scholar 

  • Fischer S, Alem IS, De Majo MS, Campos RE, Schweigmann N (2011) Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina. J Vector Ecol 36(1):94–99

    Article  PubMed  Google Scholar 

  • Foo LC, Lim TW, Lee HL, Fang R (1985) Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. Southeast Asian J Trop Med Public Health 16(4):560–568

    Google Scholar 

  • Glasser CM, Gomes AC (2002) Climate and the superimposed distribution of Aedes aegypti and Aedes albopictus on infestation of São Paulo State, Brazil. Rev Saude Publica 36:166–172

    Article  PubMed  Google Scholar 

  • Graham K, Nasir M, Rehman H, Farhan M, Kamal M, Rowland M (2002) Comparison of three pyrethroid treatments of top-sheets for malaria control in emergencies: entomological and user acceptance studies in an afghan refugee camp in Pakistan. Med Vet Entomol 16(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindo-Coulibaly N, Adja AM, Koudou BG, Konan YL, Diallo M, Koné AB, Hervé J, N’Goran KE (2010) Distribution and seasonal variation of Aedes aegypti in the Health District of Abidjan (Côte d’Ivoire). Eur J Sci Res 40(4):522–530

    Google Scholar 

  • Hanson SM, Craig GB (1995) Relationship between cold hardiness and supercooling point in Aedes albopictus eggs. J Am Mosq Control Assoc 11(1):35–38

    PubMed  Google Scholar 

  • Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 1:1–39

    CAS  Google Scholar 

  • Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, Shanks GD, Snow RW, Rogers DJ (2000) Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci U S A 97(16):9335–9339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higa Y, Nguyen TY, Kawada H, Tran HS, Nguyen TY, Takagi M (2010) Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) collected from used tires in Vietnam. J Am Mosq Control Assoc 26:1–9

    Article  PubMed  Google Scholar 

  • Ijumba JN, Lindsay SW (2001) Impact of irrigation on malaria in Africa: paddies paradox. Med Veterinary Entomol 15:1–20

    Article  CAS  Google Scholar 

  • Kawada H, Maekawa Y, Abe M, Ohashi K, Ohba S, Takagi M (2010) Spatial distribution and pyrethroid susceptibility of mosquito larvae collected from catch basins in parks in Nagasaki city, Nagasaki, Japan. Jpn J Infect Dis 63:19–24

    Article  CAS  PubMed  Google Scholar 

  • Khan J, Khan A (2015) Incidence of dengue in 2013: dengue outbreak in District Swat, Khyber Pakhtunkhwa, Pakistan. Int J Fauna Biol Stud 2(1):1–7

    Google Scholar 

  • Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62:71–92

    Article  CAS  PubMed  Google Scholar 

  • Leisnham PT, Juliano S (2009) Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160:343–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Magurran AM (2004) Measuring Biological Diversity. Blackwell Science Ltd

  • Mahmood F, McDonald MB (1985) Ecology of malaria transmission and vector capacity of an. Culicifacies species in rural Punjab, Pakistan. Pakistan J Med Res 24:95–106

    Google Scholar 

  • McBride WJ, Bielefeldt-Ohmann H (2000) Dengue viral infections; pathogenesis and epidemiology. Microb Infect 2(9):1041–1050

    Article  CAS  Google Scholar 

  • Micieli MV, Campos RE (2003) Oviposition activity and seasonal pattern of a populations of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in subtropical Argentina. Memórias do Instituto Oswaldo Cruz 98:659–663

    Article  PubMed  Google Scholar 

  • Peiris JSM, Amerasinghe FP (1994) West Nile fever. In: Beran GW, Steele JH (eds) Handbook of zoonoses, section B: viral, 2nd edn. CRC Press, pp 139–148

  • Pumpuni C, Knepler J, Craig G (1992) Influence of temperature and larval nutrition on the diapause inducing photoperiod of Aedes albopictus. J Am Mosq Control Assoc 8(3):223–227

    CAS  PubMed  Google Scholar 

  • Qutubuddin M (1960) The Mosquito Fauna of Kohat-Hangu Valley, West Pakistan. Mosq News 20:355–361

    Google Scholar 

  • Raheel U, Faheem M, Riaz MN, Kanwal N, Javed F, Zaidi NS, Qadri I (2011) Dengue fever in the indian subcontinent: an overview. J Infect Dev Ctries 5:239–247

    Article  PubMed  Google Scholar 

  • Rasheed SB, Butlin RK, Boots M (2013) A review of dengue as an emerging disease in Pakistan. Public Health 127(1):11–17. https://doi.org/10.1016/j.puhe.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  • Reisen WK, Boreham PFL (1982) Estimates of malaria vectorial capacity for Anopheles culicifacies and Anopheles tephensi in Rural Punjab Province, Pakistan. J Med Entomol 19(1):98–103

    Article  CAS  PubMed  Google Scholar 

  • Rowland M, Hewitt S, Durrani N, Bano N, Wirtz R (1997) Transmission and control of vivax malaria in afghan refugee villages in Pakistan. Trans R Soc Trop Med Hyg 91(3):252–255

    Article  CAS  PubMed  Google Scholar 

  • Rueda LM (2004) Pictoral key for the identification of mosquito (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa 589:1–60

    Article  Google Scholar 

  • Rydzanicz K, Lonc E (2003) Species composition and seasonal dynamics of mosquito larvae in the Wroclaw, Poland area. J Vector Ecol 28(2):255–266

    CAS  PubMed  Google Scholar 

  • Sengil AZ, Akkaya H, Gonenc M, Gonenc D, Ozkan D (2011) Species composition and monthly distribution of mosquito (culicidae) larvae in the Istanbul metropolitan area, Turkey. Int J Biol Med Res 2(1):415–424

    Google Scholar 

  • Shakoor MT, Ayub S, Ayub Z (2012) Dengue fever: Pakistan’s worst nightmare. WHO South East Asia J Public Health 9(3):229–231

    Article  Google Scholar 

  • Sota T, Mogi M, Hayamizu E (1992) Seasonal distribution and Habitat Selection by Aedes albopictus and Ae. Riversi (Diptera: Culicidae) in Northern Kyushu, Japan. J Med Entomol 29(2):296–304

    Article  CAS  PubMed  Google Scholar 

  • Steiger DM, Johnson P, Hilbert DW, Ritchie S, Jones D, Laurance SG (2012) Effects of landscape disturbance on mosquito community composition in tropical Australia. J Vector Ecol 37(1):69–76

    Article  PubMed  Google Scholar 

  • Stephenson I, Roper J, Fraser M, Nicholson K, Wiselka M (2003) Dengue fever in febrile returning travelers to a UK regional infectious diseases unit. Travel Med Infect Dis 1(2):89–93

    Article  PubMed  Google Scholar 

  • Suleman M, Arshad M, Khan K (1996) Yellow fever mosquito (Diptera; Culicidae) introduced into Landi Kotal, Pakistan, by tire importation. J Med Entomol 33(4):689–693

    Article  CAS  PubMed  Google Scholar 

  • Suleman M, Khan K, Khan S (1993a) Ecology of mosquitoes in Peshawar valley and adjoining areas: species composition and relative abundance. Pakistan J Zool 25(4):321–328

    Google Scholar 

  • Suleman M, Khan S (1993b) Notes on Aedine mosquitoes as diurnal pests of humans in Abbottabad Area. Pakistan J Zool 25(3):253–260

    Google Scholar 

  • Surtees G (1967) The distribution, density and Seasonal Prevalence of Aedes aegypti in West Africa. Bull World Health Organ 36(4):539–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thavara U, Tawatsin A, Chansang C, Kong-ngamsuk W, Paosriwong S, Boon-Long J, Rongsriyam Y, Komalamisra N (2001) Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J Vector Ecol 26(2):172–180

    CAS  PubMed  Google Scholar 

  • Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause european aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5(1):1–7

    Article  Google Scholar 

  • Trojan P (1992) The analysis of the fauna’s structure. Memorabilia Zool 47:1–121

    Google Scholar 

  • Vijayakumar K, Kumar S, Nujum TK, Umarul ZT, F., Kuriakose A (2014) A study on container breeding mosquitoes with special reference to Aedes (Stegomyia) aegypti and Aedes albopictus in Thiruvananthapuram district, India. J Vector Borne Dis 51(1):27–32

    CAS  PubMed  Google Scholar 

  • WHO (2009) Dengue and Dengue Haemorrhagic Fever Fact Sheets. http://www.who.int/mediacentre/factsheets/fs117/en/

  • WHO (2022) Dengue - Pakistan. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON414

  • Wongkoon S, Jaroensutasinee M, Jaroensutasinee K (2013) Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. Indian J Med Res 138(3):347–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wongkoon S, Jaroensutasinee M, Jaroensutasinee K, Preechaporn W (2007) Development sites of Aedes aegypti and ae. Albopictus in Nakhon Si Thammarat, Thailand. Dengue Bull 31:141–152

    Google Scholar 

  • Yadouléton A, Agbanrin R, Vodounon C, padonou G, Badirou K, Attolou R, Ursins F, Zola J, Allagbé H, Akogbéto M (2014) Seasonal distribution of Aedes aegypti in southern Benin: a risk of dengue virus transmission to urban populations. Int J Innov Appl Stud 9(2):648–654

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the local workers for their exceptional cooperation and support during the survey.

Author information

Authors and Affiliations

Authors

Contributions

Aisha Kausar and Naheed Ali conceived and planned the study. Aisha Kausar and Gule Tanzila carried out the collection and performed the experiments. Fatima Jahan, Nazma Habib Khan and Sobia Wahid analyzed the data and drafted the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Nazma Habib Khan.

Ethics declarations

Conflict of interest

Authors declare that they do not bear any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, A., Wahid, S., Ali, N. et al. Characterization and critical analysis of parameters that impacts productivity of Aedes mosquito species: breeding preferences of dengue vectors in urban foci of Peshawar, Khyber Pakhtunkhwa, Pakistan. Int J Trop Insect Sci 43, 1317–1325 (2023). https://doi.org/10.1007/s42690-023-01037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01037-z

Keywords

Navigation