Skip to main content

Advertisement

Log in

Termitarium morphological and microclimatic variations in an agricultural landscape

  • Short Communications
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Termitarium morphology has been suggested to be shaped by the prevailing environmental conditions, anthropogenic activities, and termite species. We found that termitaria crown diameter was significantly larger in fallow land than in farmland in an agricultural landscape. In addition, the termitaria crown cover was greater in farmland than in fallow land. It remains to be seen whether differences in the morphology of the termitaria could be adaptive to their immediate environment. It is crucial to understand the impact of human activities on the behaviour of the termite species in relation to their resilience, termitarium morphology, and termitaria thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data set analysed during the current study is available from the corresponding author upon request.

Reference

  • Adu JB, Sileshi GW, Oduro W, Dzerefos CM (2016) Effects of land-use intensification on termite diversity and abundance in the transitional zone of Ghana. J Insect Conserv 20(5):835–846

    Google Scholar 

  • Arhin E, Boadi S, Esoah MC (2015) Identifying pathfinder elements from termite mound samples for gold exploration in regolith complex terrain of the Lawra belt, NW Ghana. J African Earth Sci 109:143–153

    Article  CAS  Google Scholar 

  • Caruso A, Rudolphi J, Rydin H (2011) Positive edge effects on forest-interior cryptogams in clear-cuts. PloS One 611:e27936

    Article  Google Scholar 

  • da Costa RR, Hu H, Pilgaard B, Vreeburg SME, Schückel J, Pedersen KSK, Kračun SK, Busk PK, Harholt J, Sapountzis P, Lange L, Aanen DK, Poulsen M (2018) Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. Appl Environ Microbiol 845:e01815-17. https://doi.org/10.1128/AEM.01815-17

    Article  Google Scholar 

  • Dangerfield JM, McCarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Tropic Ecol 14(4):507–20

    Article  Google Scholar 

  • Dawes TZ (2010) Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biol Biochem 4210:1825–1834. https://doi.org/10.1016/j.soilbio.2010.06.023

    Article  CAS  Google Scholar 

  • Dibog L, Eggleton P, Norgrove L, Bignell DE, Hauser S (1999) Impacts of canopy cover on soil termite assemblages in an agrisilvicultural system in southern Cameroon. Bullet Entomol Res 892:125–132

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dibog L (2001) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45(1):1–1

    Article  Google Scholar 

  • Emerson AE (1938) Termite nests—A study of the phylogeny of behavior. Ecol Monogr 8(2):247–284

    Article  Google Scholar 

  • Emerson AE (1955) Geographical origins and dispersions of termite genera. Chicago Natural History Museum, Chicago

    Book  Google Scholar 

  • Enagbonma BJ, Babalola OO (2019) Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Ann Microbiol 693:211–219. https://doi.org/10.1007/s13213-019-1439-2

    Article  Google Scholar 

  • Ferrar P (1982) Termites of a South African savanna. Oecologia 52:147–151. https://doi.org/10.1007/BF00349024

    Article  PubMed  Google Scholar 

  • Gomati V, Ramasamy K, Kumar K, Sivaramaiah N, Mula RVR (2011) Green house gas emissions from termite ecosystem. African J Environ Sci Technol 52, Article 2. https://doi.org/10.4314/ajest.v5i2.71907

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos. 1:373–86

    Article  Google Scholar 

  • Jones DT, Susilo FX, Bignell DE, Hardiwinoto S (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra Indonesia. J Appl Ecol 40(2):380–391

    Article  Google Scholar 

  • Josens G, Deligne J (2019) Species groups in the genus Cubitermes (Isoptera: Termitidae) defined on the basis of enteric valve morphology. Eur J Taxon 515:1–72

    Google Scholar 

  • Khucharoenphaisan K, Sripairoj N, Sinma K (2012) Isolation and identification of actinomycetes from termite’s gut against human pathogen. Asian J Animal Veter Adv 71:68–73

    Google Scholar 

  • Korb J, Linsenmair KE (1998) Experimental heating of Macrotermes bellicosus Isoptera, Macrotermitinae mounds: What role does microclimate play in influencing mound architecture? Insectes Sociaux 453:335–342

    Article  Google Scholar 

  • Korb J, Linsenmair KE (1998) The effects of temperature on the architecture and distribution of Macrotermes bellicosus Isoptera, Macrotermitinae mounds in different habitats of a West African Guinea savanna. Insectes Sociaux 451:51–65

    Article  Google Scholar 

  • Korb J, Linsenmair KE (1999) The architecture of termite mounds: A result of a trade-off between thermoregulation and gas exchange? Behav Ecol 103:312–316

    Article  Google Scholar 

  • Korb J, Linsenmair KE (2000) Ventilation of termite mounds: New results require a new model. Behav Ecol 115:486–494

    Article  Google Scholar 

  • Mwakalukwa RU, Maliondo SMS, Mugasha WA, Luoga EJ, Njau KN (2019) Impacts of traditional versus conventional agricultural practices on termite diversity and composition in miombo woodlands of Tanzania. J Insect Conserv 23(1):85–97

    Google Scholar 

  • Nithyatharani R, Kavitha US (2018) Termite soil as bio-indicator of soil fertility. Int J Res Appl Sci Eng Technol 61:659–661

    Article  Google Scholar 

  • Okwu DE, Okoro E (2006) Phytochemical composition of Brachystegia eurycoma and Mucuna flagellipes seeds. Med. and Arom. Plant Sci Biotech 26:1–4

    Google Scholar 

  • Onagbola EO, Scheffrahn RH (2019) Checklist of Nigerian termites (Blattodea, Isoptera): an update. African Entomol 27(2):498–507

    Article  Google Scholar 

  • R Core Team (2017) R: A Language and Environment for Statistical Computing. http://www.r-project.org/

  • Sjöstedt Y (1926) Revision der Termiten Afrikas. 3. Monographie. Kungliga Svenska Vetenskapsakademiens Handlingar (3):3:1–419

  • Suzuki S, Noble AD, Ruaysoongnern S, Chinabut N (2007) Improvement in Water-Holding Capacity and Structural Stability of a Sandy Soil in Northeast Thailand. Arid Land Res Manag 211:37–49. https://doi.org/10.1080/15324980601087430

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(1):53–9

    Article  Google Scholar 

  • Wasmann E (1906) Beispiele rezenter Artenbildung bei Ameisengästen und Termitengästen. Biologisches Centralblatt 26(17–18):565–580

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. - In: Brian, M. V. (ed.), Production ecology of ants and termites. Cambridge University Press, Cambridge, pp. 245-292

  • Wood TG, Johnson RA, Bacchus S, Shittu ME, Anderson JM (1982) Abundance and distribution of termites (Isoptera) in a riparian forest in the southern Guinea savanna vegetation zone of Nigeria. Biotropica 1:25–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Chibuike Nwankwo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emerole, P.A., Onyenweaku, L.N., Edum, N.P. et al. Termitarium morphological and microclimatic variations in an agricultural landscape. Int J Trop Insect Sci 43, 1163–1168 (2023). https://doi.org/10.1007/s42690-023-01019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01019-1

Keywords

Navigation