Skip to main content
Log in

Insecticidal activity of fixed oils on Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae) in common bean stored

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The common bean Phaseolus vulgaris in storage is frequently attacked by insect pests, which reduce the quality of the product. The use of phosphine fumigant insecticide to control stored grain insects has led to the selection of resistant populations, and alternatives are needed. In this context, the objective of this study was to assess the insecticidal effect of grapeseed oil (Vitis vinifera) and canola oil (Brassica napus) on Z. subfasciatus in stored bean. Contact tests were carried out to determine the lethal levels of LC50 and LC95 and their respective toxicity ratios, as well as to observe the number of eggs and insects after 12 and 30 days, respectively. For the repellency test, the number of insects attracted in the lethal concentrations LC50 and LC95 was observed, in addition to the reduction in the number of eggs and emergence. In the contact test, there was no difference in the toxicity of essential oils. Both oils were efficient in the reduction of the oviposition when compared to the control treatment, with canola oil presenting the highest reduction in the number of eggs with increasing concentrations. In the repellency test, the oils were repellent in the concentrations LC50 and LC95. The largest reduction in the number of eggs and insects was found in the grape seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armijos MJG, Viteri Jumbo L, Faroni LR, Oliveira EE, Flores AF, Heleno F, Haddi K (2019) Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L. Rev Ciencias Agrícolas. https://doi.org/10.22267/rcia.193601.94

  • Barbosa DRS, de Oliveira JV, da Silva PHS, Breda MO, de Andrade Dutra K, Lopes FSC, de Araújo AMN (2020) Efficacy of bioactive compounds and their association with different cowpea cultivars against their major stored pest. Pest Manag Sci. https://doi.org/10.1002/ps.5926

    Article  PubMed  Google Scholar 

  • Bernardes WA, Silva EO, Crotti AEM, Baldin ELL (2018) Bioactivity of selected plant-derived essential oils against Zabrotes subfasciatus (Coleoptera: Bruchidae). J Stored Prod Res. https://doi.org/10.1016/j.jspr.2018.02.007

    Article  Google Scholar 

  • Chen HP, Yang K, You CX, Zheng LS, Cai Q, Wang CF, Du SS (2015) Repellency and toxicity of essential oil from Atractylodes chinensis rhizomes against Liposcelis bostrychophila. J Food Process Preserv. https://doi.org/10.1111/jfpp.12429

    Article  Google Scholar 

  • Coitinho RLB, Vargas JV, Gondim Junior MGC, Augus CGC (2006) Atividade inseticida de óleos vegetais sobre insecticide activity of vegetal oils on Sitophilus zeamais ( Coleoptera : Curculionidae ) in stored. Rev Caatinga 19:176–182

    Google Scholar 

  • Cruz CSDA, Ribeiro E, Pereira DL, Márcia L, Silva DM (2012) Repelência do C allosobruchus maculatus ( Coleoptera : Bruchidae ) sobre grãos de feijão caupi tratado com óleos vegetais. Revista Verde 7(3):01–05

    Google Scholar 

  • Dauqan E, Sani H (2011) Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil, and coconut oil) by gas chromatography. Int Conf Chem Eng. https://doi.org/10.3923/pjbs.2011.399.403

    Article  Google Scholar 

  • Engelbrecht AM, Mattheyse M, Ellis B, Loos B, Thomas M, Smith R, Peters S, Smith C, Myburgh K (2007) Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett. https://doi.org/10.1016/j.canlet.2007.08.020

    Article  PubMed  Google Scholar 

  • Garavaglia J, Markoski MM, Oliveira A, Marcadenti A (2016) Grape seed oil compounds: Biological and chemical actions for health. Nutr Metab Insights. https://doi.org/10.4137/NMI.S32910

    Article  PubMed  PubMed Central  Google Scholar 

  • González JO, Laumann RA, da Silveira S, Moraes MCB, Borges M, Ferrero AA (2013) Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.03.066

    Article  PubMed  Google Scholar 

  • Huang S, Yang N, Liu Y, Gao J, Huang T, Hu L, Zhao J, Li Y, Li C, Zhang X (2012) Grape seed proanthocyanidins inhibit colon cancer-induced angiogenesis through suppressing the expression of VEGF and Ang1. Int J Mol Med. https://doi.org/10.3892/ijmm.2012.1147. Epub 1 Oct 2012

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomo. https://doi.org/10.1146/annurev.ento.51.110104.151146

    Article  Google Scholar 

  • Isman MB (2020) Botanical insecticides in the twenty-first century-fulfilling their promise? Annu Rev Entomol. https://doi.org/10.1146/annurev-ento-011019-025010

    Article  PubMed  Google Scholar 

  • Iturralde-García RD, Borboa-Flores J, Cinco-Moroyoqui FJ, Riudavets J, Del Toro-Sánchez CL, Rueda-Puente EO, Martínez-Cruz O, Wong-Corral FJ (2016) Effect of controlled atmospheres on the insect Callosobruchus maculatus Fab. in stored chickpea. J Stored Prod Res. https://doi.org/10.1016/j.jspr.2016.06.004

  • Jesús F, Santos M, Almeida A, Santana M, Nogueira L, Araújo M (2011) Uso de óleos vegetais no controle de “Zabrotes subfasciatus” (Bohemann, 1833) (Coleoptera: Bruchidae). Boletín Sanid Veg Plagas 37:19–26

    Google Scholar 

  • Kostik V, Memeti S, Bauer B (2013) Fatty acid composition of edible oils and fats. J Hyg Eng Des. https://doi.org/10.3390/ijms160612871

    Article  Google Scholar 

  • Law-Ogbomo KE, Egharevba RKA (2006) The Use of Vegetable Oils in the Control of Callosobruchus maculatus (F) (Coleoptera: Bruchidae) in Three Cowpea Varieties. Asian J Plant Sci 5(3):547–552

    Article  Google Scholar 

  • Matos LF, Barbosa DR, da Cruz Lima E, de Andrade Dutra K, Navarro DMAF, Alves JLR, Silva GN (2020) Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind Crops Prod 145:112088. https://doi.org/10.1016/j.indcrop.2020.112088

    Article  CAS  Google Scholar 

  • Ngamo TL, Ngassoum MB, Mapongmestsem P (2007) Persistence of insecticidal activities of crude essential oils of three aromatic plants towards four major stored product insect pests. African J Agric Res 2(4):173–177

    Google Scholar 

  • Nyamador WS, Ketoh GK, Amévoin K, Nuto Y, Koumaglo HK, Glitho IA (2010) Variation in the susceptibility of two Callosobruchus species to essential oils. J Stored Prod Res. https://doi.org/10.1016/j.jspr.2009.09.002

    Article  Google Scholar 

  • Nzelu CO, Okonkwo NJ (2016) Evaluation of melon seed oil Citrullus colocynthis (L.) Schrad, for the protection of cowpea Vigna unguiculata seeds against Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). Int Adv Res J Sci Eng Technol 3(8):76–80

    Article  Google Scholar 

  • Nzelu CO, Emeasor KC, Okonkwo NJ (2020) Insecticidal activity of Piper guineense (Schumach and Thonn) seed oil against Callosobruchus maculatus (F.)(Coleoptera: Chrysomelidae) in stored cowpea seeds. Int J Regul Govern 8(8):262–270

    Google Scholar 

  • Obeng-Ofori D (1995) Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol Exp Appl. https://doi.org/10.1111/j.1570-7458.1995.tb01993.x

    Article  Google Scholar 

  • Ogendo JO, Kostyukovsky M, Ravid U, Matasyoh JC, Deng AL, Omolo EO, Kariuki ST, Shaaya E (2008) Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J Stored Prod Res. https://doi.org/10.1016/j.jspr.2008.02.009

    Article  Google Scholar 

  • Ojianwuna CC, Umoru P, Ugbebor J (2014) Toxicity of crude extracts of Ocimum suave leaf oil on cowpea weevil (Callosobruchus maculatus) (F.) (Coleoptera; Bruchidae) and test of cowpea seeds’ viability. Bioresource Bulletin 3:1–5

    Google Scholar 

  • Oladipo OE, Oladele OO, Ajayi OG (2022) Assessment of insecticidal, phytotoxicity, and fungistatic potential of chemically characterized Elaeis guineensis (Jacq) kernel oil. Biocatal Agric Biotechnol. 43:102398

    Article  CAS  Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. https://doi.org/10.1016/j.cropro.2013.10.022

    Article  Google Scholar 

  • Orsavova J, Misurcova L, Vavra Ambrozova J, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci. https://doi.org/10.3390/ijms160612871

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega-Nieblas MM, Robles-Burgueño MR, Vázquez-Moreno L, Cortez-Mondaca E, González-León A, Morales-Trejo A, González-Rios H (2014) Toxic and persistent effect of oregano’s essential oil against Zabrotes subfasciatus (Coleoptera: Bruchidae) in stored dry beans. Southwest Entomol. https://doi.org/10.3958/059.039.0114

    Article  Google Scholar 

  • Pereira ACRL, Oliveira JV, Gondim Junior MGC, Câmara CAG (2008) Atividade inseticida de óleos essenciais e fixos sobre Callosobruchus maculatus (FABR., 1775) (Coleoptera: Bruchidae) em grãos de caupi [Vigna unguiculata (L.) WALP.]. Cienc e Agrotecnologia. https://doi.org/10.1590/S1413-70542008000300003

  • Phillips TW, Throne JE (2010) Biorational approaches to managing stored-product insects. Annu Rev Entomol. https://doi.org/10.1146/annurev.ento.54.110807.090451

    Article  PubMed  Google Scholar 

  • Queiroga MFC, Gomes JP, Almeida FAC, Pessoa EB, Alves NMC (2012) Aplicação de óleo no controle de Zabrotes subfasciatus e na germinação de Phaseolus vulgaris. Rev Bras Eng Agrícola e Ambient. https://doi.org/10.1590/s1415-43662012000700011

    Article  Google Scholar 

  • Raymer PL (2002) Canola: An emerging oilseed crop. Trends New Crop. New Uses

  • Rubabura K, Nsambu M, Muhigwa B, Bagalwa M, Bashwira S (2014) Evaluation in vitro activity of insect alkaloid, saponins, terpenoids or steroids extracts Capscicum frutescens L. (Solanaceae) against Antestiopsis orbitalis ghesquierei, pests of coffee trees. Int J Res Sci Innov Appl Stud 8(3):1231–1243

    Google Scholar 

  • Sanon A, Ilboudo Z, Dabire CLB, Nebie RCH, Dicko IO, Monge JP (2006) Effects of Hyptis spicigera Lam. (Labiatae) on the behaviour and development of Callosobruchus maculatus F. (Coleoptera: Bruchidae), a pest of stored cowpeas. Int J Pest Manag. https://doi.org/10.1080/09670870600619890

    Article  Google Scholar 

  • Santana CS, Fontes LS, Silva PHS, Brito RC, Barbosa DRS, Citó AMGL (2020) Control of Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae) in Phaseolus lunatus treated with commercial essential oils. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00181-0

    Article  Google Scholar 

  • SAS Institute (2001) User’s Guide, Version 8.02, TS Level 2MO. SAS Institute Inc., Cary, NC

  • Teh SS, Morlock GE (2015) Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry. Food Chem. https://doi.org/10.1016/j.foodchem.2015.04.043

    Article  PubMed  Google Scholar 

  • Tripathi AK, Upadhya S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacogn Phyther 1(5):052–063

    CAS  Google Scholar 

  • Tso P, Ding S, DeMichele K, Huang YS (2001) Intestinal absorption of high γ-linolenic acid canola oil in lymph fistula rats. In: Huang YS, Ziboh VA (eds) (2001) γ-Linolenic acid: recent advances in biotechnology and clinical applications. AOCS Press, Champaign, IL, pp 321–334

    Google Scholar 

  • Udo I, Harry GI (2013) Effect of groundnut oil in protecting stored cowpea (Vigna unguiculata) from attack by cowpea weevil (Callosobruchus maculatus). J Biol Agric Healthcare 3(1):2013

    Google Scholar 

  • Vilela ADO, Faroni LRDA, Gomes JL, Sousa AHD, Cecon PR (2021) Allyl isothiocyanate as a fumigant in the cowpea and its effect on the physical properties of the grain. Revista Ciência Agronômica 52(3):e20207287

    Google Scholar 

  • Wale M, Assegie H (2015) Efficacy of castor bean oil (Ricinus communis L.) against maize weevils (Sitophilus zeamais Mots.) in northwestern Ethiopia. J Stored Prod Res 63:38–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Silva, MCF, Oliveira, NMS, and Fontes, LS participated in all stages of manuscript production; Barbosa, DRS, Silva, GN, and Carvalho, MS contributed to writing the manuscript and helped with statistical analysis.

Corresponding author

Correspondence to Douglas Rafael e Silva Barbosa.

Ethics declarations

Conflicts of interest

All authors of this manuscript declare that have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.C.F.e., da Silva Fontes, L., Barbosa, D.R.e. et al. Insecticidal activity of fixed oils on Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae) in common bean stored. Int J Trop Insect Sci 43, 961–969 (2023). https://doi.org/10.1007/s42690-023-01007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01007-5

Keywords

Navigation