Skip to main content

Advertisement

Log in

Molecular characterization of pathogenic African trypanosomes in biting flies and camels in surra-endemic areas outside the tsetse fly belt in Kenya

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

African animal trypanosomosis (nagana) is becoming prevalent beyond its traditionally defined geographical boundaries in African tsetse belts. However, knowledge of clinically important trypanosomes and infection rate in non-tsetse hematophagous flies and domestic animals are limited. This study characterized the potential mechanical vectors, their host feeding patterns, and trypanosome infection in them and domestic animals outside the tsetse belt in northern Kenya. Field-trapped flies and blood from camels, cattle, donkeys, goats, and sheep were screened for trypanosome infection by microscopy and polymerase chain reaction (PCR) of the internal transcribed spacer 1 region. Blood-fed specimens were analysed using PCR-HRM and/or sequencing of 16S rRNA gene to identify vertebrate blood-meal host sources. Hippobosca camelina, Stomoxys calcitrans, Tabanus spp., and Pangonia rueppellii were identified as potential vectors of trypanosomes outside the tsetse belt in Marsabit County. The trypanosome species, Trypanosoma vivax, T. evansi, T. brucei, and T. congolense were recovered in biting flies as well as in camels (Camelus dromedarius). The diversity of parasites in the biting flies was similar to that detected in the tsetse fly Glossina pallidipes collected from the tsetse-infested Shimba Hills, in coastal Kenya, suggesting a wide geographic distribution of the trypanosomes in Kenya. The biting flies fed on camels, cattle, goats, and sheep. Furthermore, we identified diverse clinical outcomes based on PCV (anemia), heamorrhagia) associated with infection with disparate Trypanosoma species. Thus, infection of flies and camels by diverse Trypanosoma species could contribute to the complex epidemiology of observed trypanosomosis in camels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed in this study are included in the article and as additional files. The newly generated sequences were deposited in the NCBI Nucleotide database under the accession numbers listed in Supplementary table.

Abbreviations

HRM:

High-resolution melting

icipe :

International Centre of Insect Physiology and Ecology

ITS1:

Intergenic transcribed spacer subunit 1

LNA:

Lymph node aspirate

PCV:

Packed Cell Volume

PCR:

Polymerase chain reaction.

References

  • Aregawi WG, Getahun EA, Abdi RD, Büscher P (2019) Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasit Vectors 12(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  • Auty HK, Torr SJ, Michoel T, Jayaraman S, Morrison LJ (2015) Cattle trypanosomosis: The diversity of trypanosomes and implications for disease epidemiology and control. Rev Sci Tech off Int Epiz 34(2):587–598

    Article  CAS  Google Scholar 

  • Balmer O, Beadell JS, Gibson W, Caccone A (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5(2). https://doi.org/10.1371/journal.pntd.0000961

  • Bargul JL, Jung J, McOdimba FA, Omogo CO, Adung’a VO, Krüger T, Masiga DK, Engstler M, (2016) Species-specific adaptations of trypanosome morphology and motility to the mammalian host. PLoS Pathog 12(2):1–29. https://doi.org/10.1371/journal.ppat.1005448

    Article  CAS  Google Scholar 

  • Birhanu H, Gebrehiwot H, Goddeeris BM, Büscher P, van Reet N (2016) New Trypanosoma evansi type B isolates from Ethiopian dromedary camels. PLoS Negl Trop Dis 10(4):1–22. https://doi.org/10.1371/journal.pntd.0004556

    Article  CAS  Google Scholar 

  • Borst P, Fase-Fowler F, Gibson WC (1987) Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol 23:31–38

    Article  CAS  PubMed  Google Scholar 

  • Büscher P, Gonzatti MI, Hébert L, Inoue N, Pascucci I, Schnaufer A, Suganuma K, Touratier L, van Reet N (2019) Equine trypanosomosis: Enigmas and diagnostic challenges. Parasit Vectors 12(1):1–8. https://doi.org/10.1186/s13071-019-3484-x

    Article  Google Scholar 

  • Cameron AR, Baldock FC (1998) A new probability formula for surveys to substantiate freedom from disease. Prev Vet Med 34(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, Gorman TA, Calvo-Alvarez E, Crouzols A, Jouvion G, Jamonneau V, Weir W, Stevenson ML, O’Neill K, Cooper A, Swar NRK, Bucheton B, Ngoyi DM, Garside P, Rotureau B, MacLeod A (2016) The Skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 5:3–5. https://doi.org/10.7554/eLife.17716

  • Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Müller MA (2014) Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013. Emerg Infect Dis 20(8):1319–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desquesnes M, Dargantes A, Lai DH, Lun ZR, Holzmuller P, Jittapalapong S (2013) Trypanosoma evansi and Surra: A review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. BioMed Res Intl. https://doi.org/10.1155/2013/321237

    Article  Google Scholar 

  • Desquesnes M, Dia ML (2003) Mechanical transmission of Trypanosoma congolense in cattle by the African Tabanid Atylotus Agrestis. Experimental Parasitol 105(3–4):226–231

    Article  Google Scholar 

  • Desquesnes M, McLaughlin G, Zoungrana A, Davila AM (2001) Detection and identification of Trypanosoma of African livestock through a single PCR based on Internal Transcribed Spacer 1 of RDNA. Intl J Parasitol 31:610–614

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian Evolutionary Analysis by sampling trees. BMC Evol Biol 7(1):1–8. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  Google Scholar 

  • Gardiner PR (1989) Recent studies of the biology of Trypanosoma vivax. Adv Parasitol 28:229–317

    Article  CAS  PubMed  Google Scholar 

  • Getahun MN, Cecchi G, Seyoum E (2014) Population studies of Glossina pallidipes in Ethiopia: Emphasis on cuticular hydrocarbons and wing morphometric analysis. Acta Trop 138:12–21

    Article  Google Scholar 

  • Getahun MN, Ngiela J, Makwatta JO, Ahuya P, Simon TK, Kamau SK, Torto B, Masiga D (2022) Metabolites from trypanosome-infected cattle as sensitive biomarkers for animal trypanosomosis. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.922760

  • Gibson WC, Wilson AJ, Moloo SK (1983) Characterisation of Trypanosoma (Trypanozoon) evansi from camels in Kenya using isoenzyme electrophoresis. Res Vet Sci 34(1):114–118

    Article  CAS  PubMed  Google Scholar 

  • Giordani F, Morrison LJ, Rowan TIMG, Koning HPDE, Barrett MP (2016) The animal trypanosomiases and their chemotherapy : A review. Parasitol 1862–89

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biol 59(3):307–21

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Hoare CA (1972). The trypanosomes of mammals. J Small Anim Pract 13:671–72

  • Jittapalapong S, Pinyopanuwat N, Inpankaew T, Sangvaranond A, Phasuk C, Chimnoi W, Kengradomkij C, Kamyingkird K, Sarataphan N, Desquesnes M, Arunvipas P (2009) Prevalence of Trypanosoma evansi infection causing abortion in dairy cows in central Thailand Kasetsart. J Natl Sci 43(5):53–57

    Google Scholar 

  • Joshi PP, Shegokar VR, Powar KM, Herder S, Katti R, Harsha RS, Dani VS, Bhargava A, Jannin J, Truc P (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: The first case report. Am J Trop Med Hyg 73(3):491–495

    Article  PubMed  Google Scholar 

  • Kamidi CM, Auma J, Mireji PO, Ndungu K, Bateta R, Kurgat R, Ouma C, Aksoy S, Murilla G (2018) Differential virulence of camel Trypanosoma evansi isolates in mice. Parasitology 145(9):1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Kamidi CM, Saarman NP, Dion K, Mireji PO, Ouma C, Murilla G, Aksoy S, Schnaufer A, Caccone A (2017) Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis 11(9):1–21. https://doi.org/10.1371/journal.pntd.0005895

    Article  Google Scholar 

  • Kassa T, Eguale T, Chaka H (2011) Prevalence of camel trypanosomosis and its vectors in Fentale District, south east Shoa zone Ethiopia. Veterinarski Arhiv 81(5):611–621

    Google Scholar 

  • Kay BH, Boreham PFL, Williams GM (1979) Host preferences and feeding patterns of mosquitoes (Diptera: Culicidae) at Kowanyama, Cape York Peninsula Northern Queensland. Bulletin Entomol Res 69(3):441–457

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimenyi NN, Kimenyi KM, Amugune NO, Getahun MN (2021) Genetic connectivity of trypanosomes between tsetse infested and tsetse free areas of Kenya. Parasitology 149(3):285–297

    Article  PubMed  Google Scholar 

  • Kirk-Spriggs AH, Sinclair BJ (2017) Manual of afrotropical diptera, Volume 1

  • Laveissière C, Grébaut P (1990) The trapping of tsetse flies (Diptera: Glossinidae). Improvement of a model: The Vavoua trap. Trop Med Parasitol 41(2):185

  • Lefort V, Longueville JE, Gascuel O (2017) SMS: Smart model selection in PhyML. Molecul Biol Evol 34(9):2422–2424

    Article  CAS  Google Scholar 

  • Luckins AG, Gray AR (1979) Trypanosomes in the lymph nodes of cattle and sheep infected with Trypanosoma congolense. Res Vet Sci 27(1):129–131

    Article  CAS  PubMed  Google Scholar 

  • Masiga DK, Ndung’u K, Tweedie A, Tait A, Turner CMR (2006) Trypanosoma evansi: Genetic variability detected using amplified restriction fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) analysis of Kenyan isolates. Exp Parasitol 114(3):147–53

  • Masiga DK, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC (1992) Sensitive detection of trypanosomes in tsetse flies by DNA amplification. Intl J Parasitol 22(7):909–918

    Article  CAS  Google Scholar 

  • Mihok S, Clausen PH (1996) Feeding habits of Stomoxys spp. stable flies in a Kenyan forest. Med Vet Entomol 10(4):392–4

  • Misra KK, Ghosh M, Choudhurya A (1976) Experimental transmission of Trypanosoma evansi to chicken. Acta Potozoologica 30(9):381–386

    Google Scholar 

  • Mossaad E, Salim B, Suganuma K, Musinguzi P, Hassan MA, Elamin EA, Mohammed GE, Bakhiet AO, Xuan X, Satti RA, Inoue N (2017) Trypanosoma vivax is the second leading cause of camel trypanosomosis in Sudan after Trypanosoma evansi. Parasit Vectors 10(1):1–10. https://doi.org/10.1186/s13071-017-2117-5

    Article  Google Scholar 

  • Mullens BA, Lii K, Mao Y, Meyer JA, Peterson NG (2006) Behavioural responses of dairy cattle to the Stable fly, Stomoxys calcitrans, in an open field environment. Med Vet Entomol 20:122–137

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Murray PK, McIntyre WIM (1977) An improved parasitological technique for the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg 71(4):325–326

    Article  CAS  PubMed  Google Scholar 

  • Ngaira JM, Olembo NK, Njagi ENM, Ngeranwa JJN (2005) The detection of non-RoTat 1.2 Trypanosoma evansi. Exp Parasitology 1:30–38

    Article  Google Scholar 

  • Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RCA, Dávila AMR (2005) The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95(3):186–192

    Article  CAS  PubMed  Google Scholar 

  • Njiru ZK, Constantine CC, Masiga DK, Reid SA, Thompson RCA, Gibson WC (2006) Characterization of Trypanosoma evansi type B. Infect Genet Evol 6(4):292–300

    Article  CAS  PubMed  Google Scholar 

  • Njiru ZK, Constantine CC, Ndung’u JM, Robertson I, Okaye S, Thompson RCA, Reid SA (2004a). Detection of Trypanosoma evansi in camels using PCR and CATT/T. evansi tests in Kenya. Vet Parasitol 124(3–4):187–99

  • Njiru ZK, Makumi JN, Okoth S, Ndungu JM, Gibson WC (2004b). Identification of trypanosomes in Glossina pallidipes and G. longipennis in Kenya. Infect Genet Evol 4(1):29–35

  • Omondi D, Masiga DK, Ajamma YU, Fielding BC, Njoroge L, Villinger J (2015) Unraveling host-vector-arbovirus interactions by two-gene high resolution melting mosquito bloodmeal analysis in a Kenyan wildlife-livestock interface. PLoS ONE 10(7). https://doi.org/10.1371/journal.pone.0134375

  • Osório ALAR, Madruga CR, Desquesnes M, Soares CO, Raquel L, Ribeiro R (2008) Trypanosoma (Duttonella ) vivax : Its biology, epidemiology, pathogenesis, and introduction in the New World - A Review. Mem Inst Oswaldo Cruz 103:1–13

    Article  PubMed  Google Scholar 

  • Owange NO, Ogara WO, Affognon H, Peter GB, Kasiiti J, Okuthe S, Onyango-Ouma W, Landmann T, Sang R, Mbabu M (2014) Occurrence of Rift Valley Fever in cattle in Ijara District. Kenya Prev Vet Med 117(1):121–128

    Article  PubMed  Google Scholar 

  • Oyieke FA, Reid G (2003) The mechanical transmission of Trypanosoma evansi by Haematobia minuta (Diptera : Muscidae) and the survival of trypanosomes in fly mouthparts parts and gut (A preliminary record). Folia Vet 47(1):38–41

    Google Scholar 

  • Peña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O (2012) High-resolution melting (HRM) of the cytochrome B gene: A powerful approach to identify blood-meal sources in chagas disease vectors. PLoS Negl Trop Dis 6(2). https://doi.org/10.1371/journal.pntd.0001530

  • Russell TL, Beebe NW, Bugoro H, Apairamo A, Cooper RD, Collins FH, Lobo NF, Burkot TR (2016) Determinants of host feeding success by Anopheles farauti. Mal J 15(1):1–9. https://doi.org/10.1186/s12936-016-1168-y

    Article  CAS  Google Scholar 

  • Saini RK, Orindi BO, Mbahin N, Andoke JA, Muasa PN, Mbuvi DM, Muya CM, Pickett JA, Borgemeister CW (2017) Protecting cows in small holder farms in East Africa from tsetse flies by mimicking the odor profile of a non-host bovid. PLoS Negl Trop Dis 11(10):1–27. https://doi.org/10.1371/journal.pntd.0005977

    Article  CAS  Google Scholar 

  • Shah I, Ali US, Andankar P, Joshi RR (2011) Trypanosomiasis in an infant from India. J Vector Borne Dis 48(2):122–123

    PubMed  Google Scholar 

  • Sumba AL, Mihok S, Oyieke FA (1998) Mechanical transmission of Trypanosoma evansi and T. congolense by Stomoxys niger and S. taeniatus in a laboratory mouse model. Med Vet Entomol 12(4):417–22

  • Taioe MO, Motloang MY, Namangala B, Chota A, Molefe NI, Musinguzi SP, Suganuma K, Hayes P, Tsiol T, Chainey J, Inoue N, Thekisoe OMM (2017) Characterization of Tabanid flies (Diptera: Tabanidae) in South Africa and Zambia and detection of protozoan parasites they are harbouring. Parasitology 144(9):1162–1178

    Article  PubMed  Google Scholar 

  • Toukam CM, Solano P, Bengaly Z, Jamonneau V, Bucheton B (2011) Experimental evaluation of xenodiagnosis to detect trypanosomes at low parasitaemia levels in infected hosts. Parasite 18(4):295–302

    Article  Google Scholar 

  • Votýpka J, Rádrová J, Skalický T, Jirků M, Jirsová D, Mihalca AD, D’Amico G, Petrželková KJ, Modrý D, Lukeš J (2015) A tsetse and Tabanid fly survey of African Great Apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Intl J Parasitol 45(12):741–748

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Copeland for helping to identify the biting flies and taking photos of the biting flies; Tiberius Marete, David Mbuvi, Peter Muasa and Irene Onyango for technical help; Kimathi Emily and Barbara Kagima, for the study site map; Kelvin Muteru for his help in the bioinformatics; James Kabii for his technical help in the molecular studies, Collins Kigen, JohnMark Makwatta, and Tawich K. Simon for technical help in the parasite survival experiments in S. calcitrans and Caroline Muya for handling the administrative issues. Special thanks go to Daud Tamasot (MCA), Malkash Lolkitarakino and Huka Guyo Qutte, Hussein Haji Abdulahi who facilitated our research at Shurr, Nanyuki and Ngurunit area. We thank Dr Mario Younan for his valuable technical advice on camels. We are grateful for the camel owners of Ngurunit, Nanyuki, and Shurr for their cooperation.

Funding

This work was supported mainly by the IBCARP camel, grant no. DCI-FOOD/2014/ 346–739 by the European Union and funding from Max Planck Institute-icipe partner group to MNG. We also gratefully acknowledge the financial support for this research by the following organisations and agencies: Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); Federal Democratic Republic of Ethiopia; and the Kenyan Government. Joel Bargul was supported whole, or in part, by the Wellcome Trust 107742/Z/15/Z and the UK Foreign, Commonwealth & Development Office, with support from the Developing Excellence in Leadership, Training and Science in Africa (DELTAS Africa) programme. The views expressed herein do not necessarily reflect the official opinion of the donors.

Author information

Authors and Affiliations

Authors

Contributions

MNG, BT, DM, SR conceptualized and designed the experiments. MNG, JLB, AO, POA, JN, JMM generated experimental data, JV contributed in the molecular part of the study. MNG analysed the data and wrote the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Merid N. Getahun.

Ethics declarations

Ethics approval and consent to participate

We collected blood samples within the framework of epidemiological surveillance activities, in accordance to the International Centre of Insect Physiology and Ecology’s Institutional Animal Care and Use Committee (IACUC) guidelines as performed during prophylaxis or diagnostic campaigns (approval number: 495 icipe-IACUC-10/2018.1). Local authorities did not require ethical statements for the research studies. We did the blood sampling of domestic animals with the authorisation of the owner. Herdsmen/women gave their consent for their animal sampling after explaining the objectives of the study. No samples other than those for routine screening and diagnostic procedures were collected. All animals sampled and found positive with trypanosomes were treated using trypanocides.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42690_2022_896_MOESM1_ESM.tif

Supplementary file1 Figure S1 PCR products were resolved 1% ethidium-bromide stained agarose gel (8V for 1.5 hrs) to check for any contamination. The DNA isolated from whole fly was amplified targeting trypanosomal ITS1 gene. Lane: M 10- bp marker, Bf (reaction buffer), wt (PCR water), TB (T. brucei ILTat 1.4) TV (T. vivax IL 2136), TC (T. congolense savannah (IL3000)), and TE (T. evansi KETRI 2479), F1- F10 DNA sample from H. camelina flies. The absence of PCR product under Bf, and wt show no contamination from extraction buffer (TIF 11846 KB)

42690_2022_896_MOESM2_ESM.tif

Supplementary file2 Figure S2 Number of H. camelina recaptured at the specified distance from pint of release. Number in parenthesis shows percentage of flies recaptured (TIF 5515 KB)

42690_2022_896_MOESM3_ESM.tif

Supplementary file3 Figure S3 (A) PCR products were resolved 1% ethidium-bromide stained agarose gel (8V for 1.5 hrs) to check for trypanosomes in blood and lymph node aspirate. The DNA isolated from blood and lymph node aspirate was amplified targeting trypanosomal ITS1 gene. Lane: M 10- bp marker, -Ve (reaction buffer), TE (T. evansi KETRI 2479) TV (T. vivax IL 2136), TC (T. congolense savannah (IL3000)), and LN_C1, LN_C2, DNA sample from two camel lymph node aspirate, B_C1 and B_C2 DNA from corresponding blood samples from the same camel. The result shows both samples of the lymph node aspirate were positive, while blood samples were negative from the same camel. (B) Five camels blood and lymph node aspirate were analysed, only camel five lymph node aspirate was positive for T.vivax but blood sample from the same camel was negative (TIF 26280 KB)

Supplementary file4 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getahun, M.N., Villinger, J., Bargul, J.L. et al. Molecular characterization of pathogenic African trypanosomes in biting flies and camels in surra-endemic areas outside the tsetse fly belt in Kenya. Int J Trop Insect Sci 42, 3729–3745 (2022). https://doi.org/10.1007/s42690-022-00896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00896-2

Keywords

Navigation