Skip to main content
Log in

Larval exposure to azadirachtin induced locomotor deficits, and impairs olfactory and gustatory preference in adults of Drosophila melanogaster (Diptera: Drosophilidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Azadirachtin, a tetranortriterpenoid botanical insecticide, has a variety of sub-lethal effects against many insect pests, including insect fitness, growth and development inhibition, antifeedancy and repellency. Despite extensive studies of the mechanisms that underline physiological effects, little attention has been given to effects of azadirachtin on olfactory and gustatory perception, and locomotor reactivity considering as an integral part of most insect behaviors. Azadirachtin was applied topically at two doses LD25 (0.28 μg) and LD50 (0.67 μg) on early third instar larvae of Drosophila melanogaster (Meigen) (Diptera: Drosophilidae) as a model organism. Results showed that previously treated flies (3rd instar larvae) showed a clear preference for solvent odor avoiding azadirachtin. The biopesticide significantly inhibited the proboscis extension response in the adults of both sexes with more marked effects in previously treated flies. These findings provide clear evidence that azadirachtin induced olfactory and taste aversion behavior suggesting a learned avoidance memory. Moreover, azadirachtin was found to affect Drosophila adult’s locomotor reactivity. These results may reflect interference of azadirachtin with the modulation of behavioral avoidance and locomotion in Drosophila which may contribute as repellent strategies and reinforce the action of azadirachtin in integrated pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedi Z, Saber M, Vojoudi S, Mahdavi V, Parsaeyan E (2014) Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm. Helicoverpa Armigera J Insect Sci 14:30

    PubMed  Google Scholar 

  • Abed-Vieillard D, Cortot J (2016) When choice makes sense: menthol influence on mating, oviposition and fecundity in Drosophila melanogaster. Front Integr Neurosci 10:5

    PubMed  PubMed Central  Google Scholar 

  • Abed-Vieillard D, Cortot J, Everaerts C, Ferveur JF (2014) Choice alters Drosophila oviposition site preference on menthol. Biol Open 3:22–28

    PubMed  Google Scholar 

  • Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 49

  • Amaral KD, Martínez LC, Lima MAP, Serrão JE, Della Lucia TMC (2018) Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. Environ Pollut 243:809–814

    CAS  PubMed  Google Scholar 

  • Aribi N, Denis B, Kilani-Morakchi S, Joly D (2020) Azadirachtin, a natural pesticide with multiple effects. Med Sci 36:44–49

    Google Scholar 

  • Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H (2012) Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 8:e1002768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P (2020) Serotonin in animal cognition and behavior. Int J Mol Sci 21:1649

    PubMed Central  Google Scholar 

  • Bantel AP, Tessier CR (2016) Taste Preference assay for adult Drosophila. J vis Exp 115:e54403

    Google Scholar 

  • Barron AB, Søvik E, Cornish JL (2010) The Roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 4:163

    PubMed  PubMed Central  Google Scholar 

  • Bensebaa F, Kilani-Morakchi S, Aribi N, Soltani N (2015) Evaluation of pyriproxyfen, a juvenile hormone analog, on Drosophila melanogaster (Diptera: Drosophilidae): Insecticidal activity, ecdysteroid contents and cuticle formation. Eur J Entomol 112:625–631

    Google Scholar 

  • Bezzar-Bendjazia R, Kilani-Morakchi S, Aribi N (2016) Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pestic Biochem Physiol 133:85–90

    CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HMN, Barcelo D (2019) Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci Total Environ 695:133896

    CAS  PubMed  Google Scholar 

  • Boulahbel B, Aribi N, Kilani-Morakchi S, Soltani N (2015) Insecticidal activity of azadirachtin on Drosophila melanogaster and recovery of normal status by exogenous 20-hydroxyecdysone. Afr Entomol 23:224–233

    Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Google Scholar 

  • Chen YCD, Park SJ, Joseph RM, Ja WW, Dahanukar AA (2019) Combinatorial pharyngeal taste coding for feeding avoidance in adult Drosophila. Cell Rep 29:961-973.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chia J, Scott K (2020) Activation of specific mushroom body output neurons inhibits proboscis extension and sucrose consumption. PLoS One 15:e0223034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin SG, Maguire SE, Huoviala P, Jefferis GSXE, Potter CJ (2018) Olfactory neurons and brain centers directing oviposition decisions in Drosophila. Cell Rep 24:1667–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa JT, Forim MR, Costa ES, De Souza JR, Mondego JM, Junior ALB (2014) Efects of diferent formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. J Stored Prod Res 56:49–53

    Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RL (2011) Traces of Drosophila Memory. Neuron 70:8–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dembo EG, Abay SM, Dahiya N, Ogboi JS, Christophides GK, Lupidi G, Chianese G, Lucantoni L, Habluetzel A (2015) Impact of repeated NeemAzal®-treated blood meals on the fitness of Anopheles stephensi mosquitoes. Parasit Vectors 8:1–13

    Google Scholar 

  • Depetris-Chauvin A, Galagovsky D, Grosjean Y (2015) Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Front Ecol Evol 3:41

    Google Scholar 

  • El-Keredy A, Schleyer M, König C, Ekim A, Gerber B (2012) Behavioural analyses of quinine processing in choice, feeding and learning of larval Drosophila. PLoS One 7:e40525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S (2019) Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Sci Rep 9:17015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaven-Pouchon J, Garcia T, Abed-Vieillard D, Farine JP, Ferveur JF (2014) Transient and permanent experience with fatty acids changes Drosophila melanogaster preference and fitness. PLoS ONE 9:e92352

    PubMed  PubMed Central  Google Scholar 

  • Gadenne C, Barrozo RB, Anton S (2016) Plasticity in insect olfaction: To smell or not to smell? Annu Rev Entomol 61:317–333

    CAS  PubMed  Google Scholar 

  • Gowda S, Salim S, Mohammad F (2021) Anatomy and neural pathways modulating distinct locomotor behaviors in Drosophila larva. Biology 10(2):90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan F, Ansari MS (2011) Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Prot 30:502–507

  • Herrero P (2012) Fruit fly behavior in response to chemosensory signals. Peptides 38:228–237

    CAS  PubMed  Google Scholar 

  • Isman MB (2020) Botanical insecticides in the twenty-first century-fulfilling their promise? Annu Rev Entomol 65:233–249

    CAS  PubMed  Google Scholar 

  • Jan MT, Abbas N, Shad SA, Saleem MA (2015) Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Noctuidae), in Pakistan. Crop Prot 78:247–252

    CAS  Google Scholar 

  • Kaun KR, Rothenfluh A (2017) Dopaminergic rules of engagement for memory in Drosophila. Curr Opin Neurobiol 43:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilani-Morakchi S, Bezzar-Bendjazia R, Ferdenache M, Aribi N (2017) Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera: Drosophilidae). Pestic Biochem Physiol 140:58–64

    CAS  PubMed  Google Scholar 

  • Kilani-Morakchi S, Goudjil-Morakchi H, Sifi K (2021) Azadirachtin-Based Insecticide: Overview, Risk Assessments, and Future Directions. Front Agron 3:676208. https://doi.org/10.3389/fagro.2021.676208

    Article  Google Scholar 

  • Lengai GM, Muthomi JW, Mbega ER (2020) Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci Afr 7:e00239

    Google Scholar 

  • Little CM, Chapman TW, Hillier NK (2019) Considerations for insect learning in integrated pest management. J Insect Sci 19:6

    PubMed  PubMed Central  Google Scholar 

  • Lu Z, Dong S, Li C, Li L, Yu Y, Yin S, Men X (2020) Sublethal and transgenerational effects of sulfoxaflor on the demography and feeding behaviour of the mirid bug Apolygus lucorum. PLoS One 15:e0232812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Jia R, Guo M, Qin K, Zhang L (2020) Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind Crops Prod 150:112403

    CAS  Google Scholar 

  • Masek P, Worden K, Aso Y, Rubin GM, Keene AC (2015) A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr Biol 25:1535–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mordue AJ, Morgan ED, Nisbet AJ (2010) Azadirachtin, a natural product in insect control. In: Gilbert LI, Gill SS (eds) Insect Control: Biological and synthetic agents. Elsevier; Academic Press, London, UK, pp 185–203

    Google Scholar 

  • Moulin TC, Ferro F, Berkins S, Hoyer A, Williams MJ, Schiöth HB (2020) Transient administration of dopaminergic precursor causes inheritable overfeeding behavior in young Drosophila melanogaster adults. Brain Sci 10:487

    CAS  PubMed Central  Google Scholar 

  • Müller T, Römer CI, Müller C (2019) Parental sublethal insecticide exposure prolongs mating response and decreases reproductive output in offspring. J Appl Ecol 56(7):1528–1537

    Google Scholar 

  • Müller T, Prosche A, Müller C (2017) Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle. Environ Pollut 230:709–717

    PubMed  Google Scholar 

  • Navarro-Roldán MA, Gemeno C (2017) Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths. J Chem Ecol 43:881–890

    PubMed  Google Scholar 

  • Oulhaci CM, Denis B, Kilani-Morakchi S, Sandoz JC, Kaiser L, Joly D, Aribi N (2018) Azadirachtin effects on mating success, gametic abnormalities and progeny survival in Drosophila melanogaster (Diptera). Pest Manag Sci 74:174–180

    CAS  PubMed  Google Scholar 

  • Pavlowsky A, Schor J, Plaçais PY, Preat T (2018) A GABAergic feedback shapes dopaminergic input on the Drosophila mushroom body to promote appetitive long-term memory. Curr Biol 28:1783–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham CK, Ray A (2015) Conservation of olfactory avoidance in Drosophila species and identification of repellents for Drosophila suzukii. Sci Rep 5:11527

    Google Scholar 

  • Qiao J, Zou X, Lai D, Yan Y, Wang Q, Li W, Deng S, Xu H, Gu H (2014) Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest Manag Sci 70:1041–1047

    CAS  PubMed  Google Scholar 

  • Qin D, Zhang P, Zhou Y, Liu B, Xiao C, Chen W, Zhang Z (2020) Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Arch Insect Biochem Physiol 103:e21646

    CAS  PubMed  Google Scholar 

  • Qin H, Cressy M, Li W, Coravos JS, Izzi SA, Dubnau J (2012) Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr Biol 22:608–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajmohan KS, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60:125–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez G, Fagundez C, Grosso JP, Argibay P, Arenas A, Farina WM (2016) Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees. Front Behav Neurosci 10:105

    PubMed  PubMed Central  Google Scholar 

  • Rittschof CC, Coombs CB, Frazier M, Grozinger CM, Robinson GE (2015) Early-life experience affects honey bee aggression and resilience to immune challenge. Sci Rep 5:15572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rook R, Rasool A, Shneider J, Levine JD (2020) Drosophila melanogaster behavior changes in different social environments based on group size and density. Comm Biol 3:304

    Google Scholar 

  • Scott K (2018) Gustatory Processing in Drosophila melanogaster. Annu Rev Entomol 63:15–30

    CAS  PubMed  Google Scholar 

  • Scott J, Buchon N (2019) Drosophila melanogaster as a powerful tool for studying insect toxicology. Pest Biochem Physiol 161:95–103

    CAS  Google Scholar 

  • Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N (2020) Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812

    CAS  PubMed  Google Scholar 

  • Shiraiwa T, Carlson JR (2007) Proboscis extension response (PER) assay in Drosophila. J vis Exp 3:e193

    Google Scholar 

  • Silva B, Hidalgo S, Campusano JM (2020) Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion. PLoS One 15:e0229671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonnet MM, Berthelot-Grosjean M, Grosjean Y (2014) Testing Drosophila olfaction with a Y-maze Assay. J Vis Exp 88:e51241

    Google Scholar 

  • Sun J, Giraud XuAQ, J, Poppinga H, Riemensperger T, Fiala A, Birman S, (2018) Neural control of ctartle-induced locomotion by the mushroom bodies and associated neurons in Drosophila. Front Syst Neurosc 12:6

    Google Scholar 

  • Tappert L, Pokorny T, Hofferberth J, Ruther J (2017) Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp. Sci Rep 7:42756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomé HVV, Martins JC, Corrêa AS, Galdino TVS, Picançon MC, Guedes RNC (2013) Azadirachtin avoidance by larvae and adult females of the tomato leafminer Tuta absoluta. Crop Prot 46:63–69

    Google Scholar 

  • Tricoire-Leignel H, Thany SH, Gadenne C, Anton S (2012) Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect. Front Physiol 3:58

    PubMed  PubMed Central  Google Scholar 

  • Waddell S (2010) Dopamine reveals neural circuit mechanisms of fly memory. Trends in Neurosci 33:457–464

    CAS  Google Scholar 

  • Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329

    CAS  PubMed  Google Scholar 

  • Walker IIIWB, Gonzalez F, Garczynski SF, Witzgall P (2016) The chemosensory receptors of codling moth Cydia pomonella-expression in larvae and adults. Sci Rep 6:23518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69:258–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier VM, Picanço MC, Chediak M, Júnior PAS, Ramos RS, Martins JC (2015) Acute toxicity and sublethal effects of botanical insecticides to honey bees. J Insect Sci 15:137

    CAS  Google Scholar 

  • Xu JW, Zhu XY, Chao QJ, Zhang YJ, Yang YX, Wang RR, Zhang Y, Xie MZ, Ge YT, Wu XL, Zhang F, Zhang YN, Ji L, Xu L (2019) Chemosensory gene families in the oligophagous pear pest Cacopsylla chinensis (Hemiptera: Psyllidae). Insects 10:175

    PubMed Central  Google Scholar 

  • Yan Y, Gu H, Xu H, Zhang Z (2017) Induction of aversive taste memory by azadirachtin and its effects on dopaminergic neurons of Drosophila. J South China Agric Univ 38:12–18

    CAS  Google Scholar 

  • Young HK, Denecke SM, Robin C, Fournier-Level A (2020) Sublethal larval exposure to imidacloprid impacts adult behaviour in Drosophila melanogaster. J Evol Biol 33(2):151–164

    CAS  PubMed  Google Scholar 

  • Zhao T, Lai D, Zhou Y, Xu H, Zhang Z, Kuang S, Shao X (2019) Azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae by releasing cathepsin in the midgut. Ecotoxicol Environ Saf 183:109512

    CAS  PubMed  Google Scholar 

  • Zhu Y, Lazopulo S, Syed S, Zhai RG (2020) Behavioral studies in Drosophila models of human diseases. Reference Module in Neuroscience and Biobehavioral Psychology. https://doi.org/10.1016/B978-0-12-809324-5.23965-5

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by DGRSDT (General Directorate of Scientific Research and Technological Development-Algeria), from the Ministry of Higher Education and Scientific Research (MESRS).

Author information

Authors and Affiliations

Authors

Contributions

S.K.M. designed the experiment; M.F. and B.B. performed the experiments and analyzed the data; S.K.M; B.B and K.S wrote the manuscript.

Corresponding author

Correspondence to Samira Kilani-Morakchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 145 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulahbel, B., Ferdenache, M., Sifi, K. et al. Larval exposure to azadirachtin induced locomotor deficits, and impairs olfactory and gustatory preference in adults of Drosophila melanogaster (Diptera: Drosophilidae). Int J Trop Insect Sci 42, 2835–2844 (2022). https://doi.org/10.1007/s42690-022-00773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00773-y

Keywords

Navigation