Skip to main content
Log in

Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The whitefly, Bemisia tabaci (Genn.) (Homoptera; Aleyrodidae) is one of the utmost destructive pests of field crops. The insect has developed resistance against synthetic pesticides due to repeated and undiscerning usage of pesticides having same mode of action. Solicitation of green synthesized silver nanoparticles (NPs) from Azadirachta indica extract is an emerging biological nanotechnology. It could prove to be a better substitute to synthetic pesticides for the proficient management of B. tabaci. The current study was premeditated for assessment of entomocidal impact of green synthesized silver NPs for the effective control of various life stages of B. tabaci under controlled conditions. Synthesis of the NPs was being done through standard protocols and surface morphology was confirmed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Results revealed that silver nano formulation at 1200 ppm proved the most effective (41.11, 71.11, 80 and 82.22%) reduction in whitefly 3rd instar nymphs after 24, 48, 72 and 96 h of the post-treatment, respectively as compared to other concentrations of silver NPs used. The same concentration of silver NPs was also the most effective against adult population of whitefly, resulted in 37.77, 67.78, 76.66 and 77.77% suppression afterward 24, 48, 72 and 96 h application respectively. Rest of the concentrations gave the lower results. The LC50 data indicated that LC50 = 411.054 ppm concentration were required to kill the 50% of test population of 3rd instar nymphs of whitefly while LC50 = 465.331 ppm were required to kill the 50% of adult population of whitefly after 96 h exposure time. The assimilation of nanoparticles impregnated with biopesticides can be a best option to make the Integrated Pest Management (IPM) of whitefly successful leading to boost up the worth and value of cotton crop in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

All data and materials are mentioned in the manuscript will be available from corresponding author on convincing demand.

References

  • Abbasi A, Sufyan M, Arif MJ, Sahi ST (2020) Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Arthropod Plant Interact 14(6):717–725

    Article  Google Scholar 

  • Abbot SW (1925) A method of computing the effectiveness of insecticide. J Econ Entomol 18:265–1267

    Article  Google Scholar 

  • Ahmed MZ, De Barro PJ, Greeff JM, Ren SX, Naveed M, Qiu BL (2011) Genetic identity of the Bemisia tabaci species complex and association with high cotton leaf curl disease (CLCuD) incidence in Pakistan. Pest Manag Sci 67(3):307–317

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MZ, Ren SX, Mandour NS, Maruthi MN, Naveed M, Qiu BL (2010) Phylogenetic analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) populations from cotton plants in Pakistan. China and Egypt J Pest Sci 83(2):135–141

    Article  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016a) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Saifullah AM, Swami BL, Ikram S (2016b) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7

    Article  CAS  Google Scholar 

  • Anonymous (2018) Economic Survey Government of Pakistan. Finance Division. Dir Adv Wing Islamabad: 84–86

  • Anonymous (2020) Economic Survey Government of Pakistan. Finance Division. Dir Adv Wing Islamabad: 84–86

  • Aslam M, Razaq M, Shah SA, Ahmad F (2004) Comparative efficacy of different insecticides against sucking pests of cotton. J Res Sci 15(1):53–58

    Google Scholar 

  • Ayoub HA, Khairy M, Rashwan FA, Abdel-Hafez HF (2017) Synthesis and characterization of silica nanostructures for cotton leaf worm control. J Nanostructure Chem 7(2):91–100

    Article  CAS  Google Scholar 

  • Bakhsh K, Hassan I, Maqbool A (2005) Factors affecting cotton yield: a case study of Sargodha (Pakistan). J Agric Soc Sci 1(4):332–334

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95:58–68

    Article  CAS  Google Scholar 

  • Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy AK, Kandakoor SB, Atanu B, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3):271–281

    Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Horti Ecosys 19(2):131–151

    Google Scholar 

  • Croissant JG, Butler KS, Zink JI, Brinker CJ (2020) Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mat 5(12):886–909

    Article  CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17(12):4022

    Article  CAS  PubMed  Google Scholar 

  • De Barro P, Ahmed MZ (2011) Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS One 6(10):e25579

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

  • Deletre E, Chandre F, Barkman B, Menut C, Martin T (2016) Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag Sci 72(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SD, Deshmukh SD, Gade AK, Rai M (2012) Pseudomonas aeruginosa mediated synthesis of silver nanoparticles having significant antimycotic potential against plant pathogenic fungi. J Bionanosci 6(2):90–94

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedi: Nanotechnol Biol Medici 5(4):382–386

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    Article  CAS  Google Scholar 

  • Geering ADW (2010) Cotton Leaf Curl (Cotton Leaf Curl Multan Virus and Others). [Online]. Pest and Diseases Image Library (2010). Available: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136662

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22(22):9322–9328

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Hebeish A, El-Rafiea, MH, EL-Sheikha MA, Saleem AA, El-Naggara ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509-515

  • Hu R, Yong KT, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. The J Phy Chem C 113(7):2676–2684

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144

    Article  CAS  Google Scholar 

  • IRAC (2016a) Bemisia tabaci adult bioassay method. (Web page: http://www.irac-online.org/methods/bemisia-tabaciadults) (Data accessed: February 2019)

  • IRAC (2016b) Bemisia tabaci nymph bioassay method. (Web page: http://www.irac-online.org/methods/trialeurodesvaporariorum-bemisia-tabaci-nymphs) (Data accessed: February 2019)

  • Jaffri SB, Ahmad KS (2018) Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. Environ Technol.

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, ZahirElango AAG (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant Tinospora Cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Jiang X, Miclauş T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, Chen C, Beer C (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicol 9:181–189

    Article  CAS  Google Scholar 

  • Jones RAC (2014) Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects. Ann Appl Biol 164(3):320–347

    Article  Google Scholar 

  • Jung JH, Oh HC, Noh HS, Ji JH, Kim SS (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aero Sci 37(12):1662–1670

    Article  CAS  Google Scholar 

  • Kannan M, Uthamasamy S, Mohan S (2004) Impact of insecticides on sucking pests and natural enemy complex of transgenic cotton. Curr Sci: 726–729

  • Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139

    Article  CAS  Google Scholar 

  • Kljajic P, Peric I (2006) Susceptibility to contact insecticides of granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) originating from different locations in the former Yugoslavia. J Stored Prod Res 42(2):149–161

  • Kvitek L, Panaccek A, Soukupova J, Kolar M, Veccerova R, Prucek R, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Article  CAS  Google Scholar 

  • Lade BD, Gogle DP, Nandeshwar SB (2017) Nano bio pesticide to constraint plant destructive pests. J Nanomed Res 6(3):1–9

    Article  Google Scholar 

  • Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X (2016) Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J 14(10):1956–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Mansour SAA, Roff MM, Khalid AS, Ismail A, Idris AG (2013) Population abundance of whitefly Bemisia tabaci (Genn.) on chili and other vegetable crops under greenhouse conditions. J Trop Agric Fd Sci 41(1):149–157

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):2445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markova IN, Zahariev IZ, Milanova VL, Ivanova DI, Piskin MB, Fachikov LB, Hristoforou E (2017) Nanomaterials based on intermetallic (Co-Sn, Ni-Sn, Co-Ni) nanoparticles studied by FTIR Spectroscopy. Rev Adv Mater Sci 52:70–81

    CAS  Google Scholar 

  • Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M (2020) Pesticides in the urban environment: A potential threat that knocks at the door. Sci Total Environ 711:134612

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    PubMed  PubMed Central  Google Scholar 

  • Mohammed HH (2013) Repellency of ethanolic extract of some indigenous plants against Tribolium confusum (Duval) (Coleoptera: Tenebrionidae). Agric Vet Sci 2(6):27–31

    Google Scholar 

  • Ortega Arenas LD (2008) Moscas blancas: temas selectos sobre su manejo (No. 632.77 M6).

  • Oshiobugie MJ, Olaniyi AM, Raphael, AO (2017) AAS and GC-MS Analysis of Phytocomponents in the Leaf, Stem and Root of Azadirachta indica A. Juss (Dongoyaro). British J Pharm Res 15(4):1–12

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Agri Food Chem 7(50):2942–2947

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Palni UT, Tripathi NN (2014) Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F.(Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds. J Food Sci Technol 51(12):4066–4071

  • Park IK, Lee SG, Choi DH, Park JD, Ahn YJ (2003) Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J Stored Prod Res 39(4):375–384

  • Pinheiro PV, Quintela ED, Oliveira JPD, Seraphin JC (2009) Toxicity of neem oil to Bemisia tabaci biotype B nymphs reared on dry bean. Pesqui Agropecu Bras 44:354–360

    Article  Google Scholar 

  • Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Nasrabadi M (2015) Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta A Mol Biomol Spectrosc 136:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microb Biotechnol 98:1951–1961

    Article  CAS  Google Scholar 

  • Rajpoot SK, Rana DS (2016) Crop Diversification with Vegetable Cowpea. Indian Farm 66(1):05–09

    Google Scholar 

  • Rani PU, Laxmi KP, Vadlapudi V, Sreedhar B (2016) Phytofabrication of silver nanoparticles using the mangrove associate, Hibiscus tiliaceus plant and its biological activity against certain insect and microbial pests. J Biopestic 9(2):167–179

    Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L.(Solanaceae: Solanales). Acta Trop 128(3):613–622

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

  • Rehman H, Majeed B, Farooqi MA, Rasul A, Sagheer M, Ali Q, Akhtar ZR (2021) Green synthesis of silver nitrate nanoparticles from Camelina Sativa (L.) and Its Effect to Control Insect Pests of Stored Grains. Int J Trop Insect Sci: 1–9

  • Rouhani AM, Samih MA. Kalantari S (2012a) Insecticidal effect of silica and silver nanoparticles on the Cowpea Seed Beetle, Callosobruchus maculatus F. (Col.: Bruchidae). Entomol Res 4(4):297–305

  • Shaker AM, Zaki AH, Abdel-Rahim EF, Khedr MH (2016) Novel CuO nanoparticles for pest management and pesticides photodegradation. Adv Environ Biol 10(12):274–283

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci: Formerly Pesti Sci 66(6):577–579

    Article  CAS  Google Scholar 

  • Velavan S, Arivoli P, Mahadevan K (2012) Biological reduction of silver nanoparticles using Cassia auriculata flower extract and evaluation of their in vitro antioxidant activities. Nanosci Nanotechnol Int J 2(4):30–35

    Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9(1):109–115

    Article  CAS  Google Scholar 

  • Wadhwa S (2009) Nanotechnology and its future applications. Chillibreeze, 25th April. Indian Talent, Global Content

  • Xie J, Lee JY, Wang DI, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1(5):429–439

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopestic 5:95

    Google Scholar 

Download references

Acknowledgements

The authors are very thankful to MNS-University of Agriculture, Multan for providing research facility to conduct present experiment. The authors are also special thanks to Higher Education Commission (HEC) of Pakistan providing financial assistance in Indigenous 5000 PhD fellowship and supervisory committee for giving the valuable suggestions and comments for improvement of this manuscript.

Funding

Funding provided by Higher Education Commission (HEC) and MNS-University of Agriculture, Multan, Punjab, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

MS carried out the experiments, reared B. tabaci, collected the data, analyzed the data, and wrote the manuscript. UN designed and supervised the experiments, provided technical guidance; WSK critically reviewed the manuscript for intellectual gratified. SS and KR read and sanctioned the final manuscript.

Corresponding author

Correspondence to Muhammad Shahid.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, M., Naeem-Ullah, U., Khan, W.S. et al. Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae). Int J Trop Insect Sci 42, 2443–2454 (2022). https://doi.org/10.1007/s42690-022-00771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00771-0

Keywords

Navigation