Skip to main content
Log in

Decreased reproductive fitness of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae) in response to hexane leaf extract of Ocimum sanctum Linn. (Lamiaceae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Reproductive fitness of Dysdercus koenigii Fabricius as influenced by the Ocimum sanctum Linn. leaf hexane extract was assessed by observing mating behaviour, fecundity and fertility of the adults developed from the treated fifth instar nymphs. O. sanctum leaf hexane extract affected the mating behaviour of both males and females of D. koenigii. The male exhibited reduced sexual activity which resulted in decreased percent successful mating. There was a decrease in the number of males attempting mounting and the number of mounting attempts; an increase in time taken in order to mate successfully was also reported. The females showed drastic changes in the mating receptivity; in most of the cases, the treated females were non-responsive to the courting males. They often showed mate rejection behaviour which was characterized by shaking of their abdomen and kicking to the courting males with the help of hind legs. Maximum aberration in mating behaviour was seen in the mating pairs, where both the mating partners were treated. Also, the O. sanctum leaf hexane extract impaired oviposition and egg hatchability in a dose-dependent manner. There was a decrease in the number of egg batches and eggs laid by the treated female. Although, the females laid fertile eggs, a significant decrease in the percent egg hatchability was reported in the treated females. The present studies indicated that the O. sanctum leaf hexane extract drastically reduced the reproductive fitness of D. koenigii, and hence potentially may be used in ‘integrated pest management’ of D. koenigii and similar heteropteran insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anshul N, Kalra A, Singh D (2014) Biological effect of sweet wormwood, Artemisia annuam ethanol extracts and essential oil against Helicoverpa armigera Hub. (Lepidoptera:Noctuidae). J Entomol Zool Stud 2(6):304–307

  • Aranha MM, Vasconcelos ML (2018) Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 52:139–148. https://doi.org/10.1016/j.conb.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  • Asawalam EF, Adesiyan SO (2001) Potentials of Ocimum basilicum (Linn.) for the control of Sitophilus zeamais (Motsch). Niger Agric J 32:195–201. https://doi.org/10.4314/naj.v32i1.49381

    Article  Google Scholar 

  • Asawalam EF, Emosairue SO, Hassanali A (2008) Essential oil of Ocimum grattissimum (Labiatae) as Sitophilus zeamais (Coleoptera: Curculionidae) protectant. Afr J Biotechnol 7(20):3771–3776

    CAS  Google Scholar 

  • Asha A, Rathi JM, Raja DP, Sahayaraj K (2012) Biocidal activity of two marine green algal extracts against third instar nymph of Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopestic 5:129–134. https://doi.org/10.2478/v10045-012-0008-5

    Article  CAS  Google Scholar 

  • Awad HH, Ghazawy NA, Abdel Rahman KM (2013) Impact of farnesol on the food consumption and utilization, digestive enzymes and fat body proteins of the desert locust Schistocerca gregaria Forskål (Orthoptera: Acrididae). Afr Entomol 21(1):126–31

    Article  Google Scholar 

  • Balasubramanian S, Ganesh D, Shridhar RP, Surya Narayana VVS (2014) GC-MS Analysis of Phytocomponents in the methanolic Extract of Ocimum Sanctum(TULSI). Asian J Pharm Anal Med Chem 2(2):71–75

    CAS  Google Scholar 

  • Barbosa WF, Smagghe G, Guedes RNC (2015) Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053

    Article  CAS  Google Scholar 

  • Bastock M, Manning A (1955) The courtship of Drosophila melanogaster. Behaviour 8:85–110. https://doi.org/10.1163/156853955X00184

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano biofungicides: emerging trend in insect pest control. In Prasad R. (eds) Advances and Applications through Fungal Nanobiotechnology. Fungal Biol. Springer, Cham. https://doi.org/10.1007/978-3-319

  • Blanckenhorn WU, Dixon AFG, Fairbairn DJ, Foellmer MW, Gilbert P, van der Linde K, Meier R, Nylin S, Pitnick S, Schoff C, Signorelli M, Teder T, Wiklundet C (2007) Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat 169:245–257. https://doi.org/10.1086/510597

    Article  Google Scholar 

  • Carde RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34(7):854–66. https://doi.org/10.1007/s10886-008-9484-5

    Article  CAS  PubMed  Google Scholar 

  • Chaubey MK (2016) Insecticidal activities of Cinnamomum tamala (Lauraceae) essential oil against Sitophilus oryzae L. (Coleoptera: Curculionidae). Int J Entomol Res 4(3):91–98

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS One 10(11):e0141444. https://doi.org/10.1371/journal.pone.0141444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crean CS, Gilburn AS (1998) Sexual selection as a side-effect of sexual conflict in the seaweed fly, Coelopaursina (Diptera: Coelopidae). Anim Behav 56:1405–1410. https://doi.org/10.1006/anbe.1998.0932

    Article  CAS  PubMed  Google Scholar 

  • Devendran G, Balasubramanian U (2011) Qualitative phytochemical screening and GC-MS analysis of Ocimum sanctum L. leaves. Asian J Plant Sci Res 1(4):44–48

  • Dulac C, Kimchi T (2007) Neural mechanisms underlying sex-specific behavior in the female mouse brain. Nature 448:1009–1014

    Article  Google Scholar 

  • Fernandes CP, Xavier A, Pacheco JPF, Santos MG, Mexas R, Ratcliffe NA, Gonzalez MS, Mello CB, Rocha L, Feder D (2013) Laboratory evaluation of the effects of Manilkara subsericea (Mart.) Dubard extracts and triterpenes on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest Manag Sci 69:292–301. https://doi.org/10.1002/ps.3388

    Article  CAS  PubMed  Google Scholar 

  • Frazer HL (1944) Observations on the method of transmission of internal boll disease of cotton by the cotton stainer bug. Ann Appl Biol 31:271–290. https://doi.org/10.1111/j.1744-7348.1944.tb06738.x

    Article  Google Scholar 

  • Goodman WG, Cusson M (2012) The juvenile hormones. In: Gilbert LI, editor. Insect Endocrinol. Elsevier 310–365

  • Guddewar MB, Chandra R, Kumar C (1994) Evaluation of insecticidal and growth inhibiting properties of some indigenous plants against Dysdercus koenigii (Fab.). Plant Protect Bull (Faridabad) 46:1–3

    Google Scholar 

  • Gupta KK (2004) Influence of mating on mating receptivity and mate selection behaviour of Dysdercus koenigii Fabricius. Indian J Entomol 66:165–167

    Google Scholar 

  • Gupta KK, Sehgal SS (1995) Influence of multiple mating on reproductive success of Dysdercus koenigii Fabricius. Shashpa 2:33–41

    Google Scholar 

  • Gupta KK, Sehgal SS (1997) Mechanism of mate finding and recognition in mating behaviour of red cotton bug. Bull Entomol 38:18–22

    Google Scholar 

  • Gupta KK, Shazad M, Kumar S (2019) Relevance of the prolonged first mating in reproductive bioactivities of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoriedae). Polish J Entomol 88:63–77. https://doi.org/10.2478/pjen-2019-0005

    Article  Google Scholar 

  • Hardy ICW, Ode PJ, Siva-Jothy M (2007) Mating Behaviour. In: Jervis M.A. (eds) Insects As Natural Enemies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2625-6_4

  • Hartman R (1978) The juvenile hormone-carrier in the haemolymph of the acridine grasshopper Gomphocerus rufus L.: Blocking of the juvenile hormone’s action by means of repeated injections of an antibody to the carrier. Wilhelm Roux’s Arch Dev Biol 184:301–324. https://doi.org/10.1007/BF00848388

    Article  Google Scholar 

  • Huang J, Marchal E, Hult EF, Tobe SS (2015) Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PloS One 10(2):e0117291. https://doi.org/10.1371/journal.pone.0117291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim YB, Knowles CO (1986) Influence of formamidines on reproduction in two spotted spider mite (Acari: Tetranychidae). J Econ Entomol 79:7–14. https://doi.org/10.1093/jee/79.1.7

    Article  CAS  Google Scholar 

  • Jaleel W, Saeed S, Naqqash MN (2013) Biology and bionomics of Dysdercus koenigii F. (Hemiptera: Pyrrhocoridae) under laboratory conditions. Pak J Agric Sci 50:373–378

    Google Scholar 

  • Karihaloo JL, Kumar PA (2009) Bt. Cotton in India-a status report, 2nd edn. Asia Pacific consortium on agricultural biotechnology, New Delhi, pp 56

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 103(6):1361–1368

  • Kayesth S, Gupta KK (2018) Impact of Lantana camara hexane extract on survival, growth and development of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoriedae). Acta Ecol Sin 38:187–192. https://doi.org/10.1016/j.chnaes.2017.12.002

    Article  Google Scholar 

  • Kayesth S, Kumar S, Shazad M, Gupta KK (2020) Effects of hexane extract of Lantana camara leaves on reproductive bioactivities of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae). Acta Ecol Sin 40(3):247–53. https://doi.org/10.1016/j.chnaes.2019.05.007

    Article  Google Scholar 

  • Kayesth S, Kumar S, Shazad M, Gupta KK (2019) Effects of Ocimum sanctum hexane extract on survival and development of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoriedae). Arch Phytopathol Plant Protect 51(17–18):993–1007. https://doi.org/10.1080/03235408.2018.1541148

  • Kayesth S, Shazad M, Kumar S, Gupta KK (2017) Effect of ethanol extract of Catharanthus roseus, Ocimum sanctum and Lantana camara on fecundity and fertility of red cotton bug, Dysdercus koenigii Fabricius (heteroptera: pyrrhocoreidae). J Entomol Zool Stud 5(4):348–353

    Google Scholar 

  • Khair-ul-Bariyah S (2013) Comparison of the physical characteristics and GC/MS of the essential oils of Ocimum basilicum and Ocimum sanctum. Int J Sci Res Dev 1(9):363–372

    Google Scholar 

  • Kiradoo MM, Srivastava M (2010) A comparative study on the efficacy of two lamiaceae plants on egg-laying performance by the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae). J Biopestic 3:590–595

    Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341(6147):759–765

    Article  Google Scholar 

  • Kwan WH, Gatehouse AG (1978) The effects of low doses of three insecticides on activity, feeding, mating and reproduction performance and survival in Glossina morsitans (Glossinidae). Entomol Exp Appl 23:201–221. https://doi.org/10.1111/j.1570-7458.1978.tb02738.x

    Article  CAS  Google Scholar 

  • Laroche L, Ravel LS, Baldet T, Lancelot R, Chandre F, Rossignol M, Le Goff V, Duhayon M (2020) FafetJ-F, ParkerAG, Bouyer J (2020) Boosting the sterile insect technique with pyriproxyfen increases tsetse flies Glossina palpalis gambiensis sterilization in controlled conditions. Sci Rep 10:9947. https://doi.org/10.1038/s41598-020-66850-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasbleiz C, Ferveur JF, Everaerts C (2006) Courtship behaviour of Drosophila melanogaster revisited. Anim Behav 72(5):1001–1012

    Article  Google Scholar 

  • Leskey TC, Lee DH, Short BD, Wright SE (2012) Impact of insecticides on the invasive Halyomorpha halys (Hemiptera: Pentatomidae): Analysis of insecticide lethality. J Econ Entomol 105(5):1726–1735

    Article  CAS  Google Scholar 

  • Lima MAP, Martins GF, Oliveira EE, Guedes RNC (2016) Agrochemical-induced stress in stingless bees:peculiarities, underlying basis, and challenges. J Comp Physiol A 202:733–747

    Article  CAS  Google Scholar 

  • Maurya P, Sharma P, Mohan L, Verma MM, Srivastava CN (2012) Larvicidal efficacy of Ocimum basilicum extracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pac J Trop Dis 2(2):110–6

    Article  CAS  Google Scholar 

  • Mazzi D, Kesäniemi J, Hoikkala A, Klappert K (2009) Sexual conflict over the duration of copulation in Drosophila montana: why is longer better? BMC Evol Biol 9(1):1–3. https://doi.org/10.1186/1471-2148-9-132

    Article  Google Scholar 

  • Moore ES (1930) Internal boll disease of cotton in South Africa. ex report on cotton insect and disease investigations Part I. Department of Agriculture and Forestry, South Africa. J Bull 94:11–18

  • Multigner L, Ndong JR, Giusti A, Romana M, Delacroix-Maillard H, Cordier S, Jégou B, Thome JP, Blanchet P (2010) Chlordecone exposure and risk of prostate cancer. J Clin Oncol 28:3457–3462

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health 4:148. https://doi.org/10.3389/fpubh.2016.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberlander H, Sower L, Silhacek DL (1975) Mating behavior of Plodia interpunctella reared on juvenile hormone treated diet. J Insect Physiol 21(3):681–685. https://doi.org/10.1016/0022-1910(75)90170-5

    Article  CAS  Google Scholar 

  • Ogendo JO, Kostyukovsky M, Ravid U, Matasyoh JC, Deng AL, Omolo EO, Kariuki ST, Shaaya E (2008) Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J Stored Prod Res 44(4):328–334

  • Ohba S, Ohashi K, Pujiyati E, Higa Y, Kawada H, Mito M, Takagi M (2013) The effect of pyriproxyfen as a population growth regulator against Aedes albopictus under semi-field conditions. PloS One 8(7):e67045

  • Okigbo RN, Okeke JJ, Madu NC (2010) Larvicidal effects of Azadirachta indica, Ocimum gratissimum and Hyptis suaveolens against mosquito larvae. J Agric Technol 6(4):703–19

    Google Scholar 

  • Pandey JP, Tiwari RK (2011) Neem based insecticides interaction with development and fecundity of red cotton bug, Dysdercus cingulatus (Fab.). Int J Agric Res 6:335–346. https://doi.org/10.3923/ijar.2011.335.346

    Article  CAS  Google Scholar 

  • Paton AL, Harley RM, Harley MM (1999) Ocimum: an overview of classification and relationships. Basil 23:11–46

    Google Scholar 

  • Pearson EO (1947) The development of internal boll disease of cotton in relation to time of infection. Ann Appl Biol 34:527–545. https://doi.org/10.1111/j.1744-7348.1947.tb06386.x

    Article  CAS  Google Scholar 

  • Perez CR, Nyati P, Noriega FG (2015) A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. Insect Biochem Mol Biol 64:44–50. https://doi.org/10.1016/j.ibmb.2015.07.010

    Article  CAS  Google Scholar 

  • Revadi S, Vitagliano S, Stacconi MVR, Ramasamy S, Mansourian S, Carlin S, Vrhovsek U, Becher PG, Mazzoni V, Rota-Stabelli O, Angeli S, Dekker T, Anfora G (2015) Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol Entomol 40(1):54–64

    Article  CAS  Google Scholar 

  • Riddiford LM (1994) Cellular and molecular actions of juvenile hormone I. General considerations and premetamorphic actions. Adv Insect Physiol 24:213–274. https://doi.org/10.1016/S0065-2806(08)60084-3

    Article  CAS  Google Scholar 

  • Riddiford LM (2012) How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 179(3):477–484. https://doi.org/10.1016/j.ygcen.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Riddiford LM, Truman JW (1978) Biochemistry of insect hormones and insect growth regulators, In Biochemistry of Insects (Ed. M. Rockstein,). Acad Press New York 307

  • Robb KL, Parrella MP (1984) Sublethal effects of two insect growth regulators applied to larvae of Liriomuza trifolii (Diptera: Agromvzidae). Econ Entomol 77:1288–1292. https://doi.org/10.1093/jee/77.5.1288

    Article  CAS  Google Scholar 

  • Sahayaraj K, Alakiaraj RJ, Borgio JF (2006) Ovicidal and ovipositional effect of Pedalium murex Linn. (Pedaliaceae) root extracts on Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). Entomon 31:57–60

    Google Scholar 

  • Sahayaraj K, Jeeva YM (2012) Nymphicidal and ovipositional efficacy of a seaweed, Sargassum tenerrimum (J. Agardh) against Dysdercus cingulatus (Fab.) (Pyrrhocoridae). Chil J Agric Res 72:152–156. https://doi.org/10.4067/S0718-58392012000100024

    Article  Google Scholar 

  • Salunke BK, Prakash K, Vishwakarma KS et al (2009) Plant metabolites: an alternative and sustainable approach towards post harvest pest management in pulses. Physiol Mol Biol Plants 15:185. https://doi.org/10.1007/s12298-009-0023-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samal RR, Kumar S (2021) Cuticular thickness associated with insecticide resistance in Aedes aegypti. Int J Trop Insect Sci 41:809–820. https://doi.org/10.1007/s42690-020-00271-z

    Article  Google Scholar 

  • Santos MF, Krüger AP, Turchen LM, Cutler GC, Oliveira EE, Guedes RNC (2018) Non targeted insecticidal stress in a pest species: insecticides, sexual fitness and hormesis in the Neotropical brown stink bug Euschistus heros. Ann Appl Biol 172:375–383. https://doi.org/10.1111/aab.12428

    Article  CAS  Google Scholar 

  • Sathyaseelan V, Baskaran V, Mohan S (2008) Efficacy of some indigenous pesticidal plants against pulse beetle, Callosobruchus chinensis (L.) on green gram. J Entomol 5(2):128–132

  • Schmidt GH, Ibrahim NMM, Abdallah MD (1991) Toxicological studies on the long term effect of heavy metal (Hg, Cd, Pb) in soil on the development of Aiolopus thalassinus (Fabr.). (Saltatoria: Acrididae). Sci Total Environ 107:109–133. https://doi.org/10.1016/0048-9697(91)90254-C

    Article  CAS  Google Scholar 

  • Schooley DA, Baker FC (1985) Juvenile hormone biosynthesis. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G.A. and Gilbert L.I.). Pergamon Press, Oxford 7:363–389

    Google Scholar 

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Philos Trans R Soc London B Biol Sci 357:1153–1170. https://doi.org/10.1098/rstb.2002.1117

    Article  Google Scholar 

  • Socha R, Zemek R (2004) Mating behaviour and wing morph-related differences in the sexual activity of a flightless bug, Pyrrhocorisapterus (L.) (Heteroptera). Ethol Ecol Evol 16(3):217–229

  • Sontakke H, Irshad B, Jain SM, Saxena RC, Bhagel AK, Jadhaw BV (2013) Fecundity and fertility control of red cotton bug (Dysdercus cingulatus) by the extract of Psoralea corylifolia. Int J Res Pharm Biomed Sci 4:633–635

    Google Scholar 

  • Tennyson S, Ravindran KJ, Arivoli S (2012) Screening of twenty-five plant extracts for larvicidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Asian Pac J Trop Biomed 2(2):S1130-4

    Article  Google Scholar 

  • Thornhill R (1976) Sexual selection and nuptial feeding behavior in Bittacus apicalis (Insecta: Mecoptera). Am Nat 110:529–548. https://doi.org/10.1086/283089

    Article  Google Scholar 

  • Thornhill R, Alcock J (1983) The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, Massachusetts

    Book  Google Scholar 

  • Tiwari RK, Pandey JP, Kumar D (2006) Effects of neem-based insecticides on metamorphosis, haemocytes and reproductive behavior in the red cotton bug, Dysdercus koenigii Fabr. (Heteroptera: Pyrrhocoridae). Entomon 4:267

  • Upadhyay RK, Ahmad S (2011) Management strategies for control of stored grain insect pests in farmer stores and public ware houses. World J Agric Sci 7(5):527–549

    Google Scholar 

  • Warikoo R, Wahab N, Kumar S (2011) Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L. Parasitol Res 109(4):1125–31

    Article  Google Scholar 

  • Wyatt GR (1997) Juvenile hormone in insect reproduction – a paradox? Eur. J. Entomol. 94:323–333

    CAS  Google Scholar 

  • Yarou BB, Bawin T, Boullis A, Heukin S, Lognay G, Verheggen FJ, Francis F (2018) Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ Sci Pollut Res 25(30):29880–8

    Article  CAS  Google Scholar 

  • Zefa E, Martins LP, Szinwelski N (2008) Complex mating behavior in Adelosgryllus rubricephalus (Orthoptera, Phalangopsidae, Grylloidea). Iheringia Sér Zool 98(3). https://doi.org/10.1590/S0073-47212008000300006

  • Zoubiri S, Baaliouamer A (2014) Potentiality of plants as source of insecticide principles. J Saudi Chem Soc 18(6):925–938. https://doi.org/10.1016/j.jscs.2011.11.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Rajiv Aggarwal, Principal, Deshbandhu College, University of Delhi, for providing necessary infrastructure during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar Gupta.

Ethics declarations

Ethical statement

The present research work does not need ethical clearance.

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayesth, S., Shazad, M., Kumar, S. et al. Decreased reproductive fitness of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae) in response to hexane leaf extract of Ocimum sanctum Linn. (Lamiaceae). Int J Trop Insect Sci 42, 1505–1516 (2022). https://doi.org/10.1007/s42690-021-00669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00669-3

Keywords

Navigation