Skip to main content
Log in

Wing phenotypic plasticity, quantitative genetics, modularity, and phylogenetic signal analysis revealed the niche partitioning in two fruit fly species, Bactrocera dorsalis and Zeugodacus cucurbitae

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Fruit flies are among the most common insect pests in the world. The presence of many cryptic species and numerous fruit fly species sharing the same niche cause considerable difficulty in species identification. This study investigates the species-specific wing morphology of two fruit fly species (Bactrocera dorsalis - BD and Zeugodacus cucurbitae - ZC) using a geometric morphometric tool. Both fruit flies were collected using species-specific pheromone traps from the same niche. We detected significant wing size and shape variability within and between the species. BD wing was more symmetrical than ZC, and fluctuation asymmetry (FA) and directional asymmetry (DA) are more prominently expressed in ZC. This is the first attempt to evaluate the modularity (by using three subsets in proximal-distal wing axis), quantitative genetic and phylogenetic signal analysis of BD and ZC, and this is the first report of the geometric morphometric analysis of ZC. The highly integrative wing system was observed in both species (except the left-wing of BD). We concluded that, through the quantitative genetic analysis, BD is a highly dispersing nature than the ZC. ZC and BD evolutionary separated in a distinct morphospace, and all characters (wing shape, size, and venation pattern) are derived based on their ecological conditions. These results are interpreted in terms of the interspecific competition of two fruit fly sharing the same niche, and the different levels of phenotypic wing plasticity response reduce rivalry and promote spatial resource partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/ or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amorin DS, Rindal E (2007) Phylogeny of the Mycetophiliformia, with proposal of the subfamilies Heterotrichinae, Ohakuneinae, and Chiltrichinae for the Rangomaramidae (Diptera, Bibinomopha). Zootaxa 1535:1–92

    Google Scholar 

  • Anand PP, Shibu Vardhanan Y (2020) Computational modelling of wet adhesive mussel foot proteins (Bivalvia): insights into the evolutionary convolution in diverse perspectives. Sci Rep 10:2612. https://doi.org/10.1038/s41598-020-59169-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman MA (1982) III Chemical methods for suppression or eradication of fruit fly populations, In: Drew RAI, Hooper GHS, Bateman MA (eds) Economic fruit flies of the south pacific region. 2nd edn. Brisbane, Australia: Queensland Department of Primary Industries 115–128

  • Beasley DAE, Bonisoli-Aliquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: Individuals, populations and communities. Blackwell Scientific Publications

  • Betts CR, Wootton RJ (1988) Wing shape and flight behaviour in butterflies (lepidoptera: papilionidea and hesperioidea): a preliminary analysis. J Exp Biol 138:271–288

    Google Scholar 

  • Byers GW (1989) Homologies in wing venation of primitive Diptera and Mecoptera. Proc Entomol Soc Washington 91:497–501

    Google Scholar 

  • Chinvinijkul S, Srikachar S, Kumjing P, Kimjong W, Sukamnouyporn W, Polchaimat N (2015) Inter-regional mating compatibility among Bactrocera dorsalis populations in Thailand (Diptera, Tephritidae). Zookeys 540:299–311. https://doi.org/10.3897/zookeys.540.6568

    Article  Google Scholar 

  • Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Koderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Ann Rev Entomol 50:293–319

    CAS  Google Scholar 

  • Costa M, Mateus RP, Moura MO (2015) Constant fluctuating asymmetry but not directional asymmetry along the geographic distribution of Drosophila antonietae (Diptera, Drosophilidae). Rev Bras Entomol 59:337–342. https://doi.org/10.1016/j.rbe.2015.09.004

    Article  Google Scholar 

  • Damman H (1993) Patterns of herbivore interaction among herbivore species. In: Stamp NE, Casey TM (eds) Caterpillars: Ecological and Evolutionary constraints on foraging. Chapman and Hall, New York, pp 132–69

    Google Scholar 

  • David KJ, Ramani S (2011) An illustrated key to fruit flies (Diptera: Tephritidae) from Peninsular India and the Andaman and Nicobar Islands. Zootaxa 3021:1–31

    Google Scholar 

  • David KJ, Ramani S (2019) New species, redescription and phylogenetic revision of tribe Dacini (Diptera: Tephritidae: Dacinae) from India based on morphological characters. Zootaxa 4551(2):101–146. https://doi.org/10.11646/zootaxa.4551.2.1

  • Denno RF, Roderick GK (1992) Density related dispersal in planthoppers: effects of interspecific crowding. Ecology 73:1323–34

    Google Scholar 

  • Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects: Competition Reexamined and Resurrected. Ann Rev Entomol 40:297–331

    CAS  Google Scholar 

  • Dhillon MK, Singh R, Naresh JS, Sharma HC (2005) The melon fruit fly, Bactrocera Cucurbitae: A review of its biology and management. J Insect Sci 5(40)

  • Doorenweerd C, San Jose M, Barr N, Leblanc L, Rubinoff D (2020) Highly variable COI haplotype diversity between three species of invasive pest fruit fly reflects remarkably incongruent demographic histories. Sci Report 10:6887. https://doi.org/10.1038/s41598-020-63973-x

    Article  CAS  Google Scholar 

  • Dudley R (2002) Mechanisms and implication of animal flight maneuverability. Integr Comp Biol 42:135–140

    PubMed  Google Scholar 

  • Duyck PF, David P, Quilici S (2004) A review of relationship between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29(5):511–520

    Google Scholar 

  • Edson JL (1985) The influences of predation and resource subdivision on the coexistence of goldenrod aphids. Ecology 66:1736–43

    Google Scholar 

  • EPPO (2020) EPPO Global database. In: EPPO Global database, Paris, France: EPPO (Accessed: 21 Aug 2020)

  • Eta CR (1986) Review eradication of the melon fly from Shortland islands, Western Province, Solomon Islands. Solomon Islands, Agriculture Quarantine Service, 1985 annual report Honiara, Solomon Islands; Agriculture Quarantine Service 14–23

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, Essex

    Google Scholar 

  • Fanara JJ, Hasson E (2001) Oviposition acceptance and fecundity schedule in the catcophilic sibling species Drosophila buzzatii and D. Koepferae on their natural hosts. Evolution 55:2615–2619

    CAS  PubMed  Google Scholar 

  • Fanara JJ, Mensch J, Folguera G, Hasson E (2004) Developmental time and thorax length differences between the cactophilic species Drosophila buzzatii and D. koepferae reared in different natural hosts. Evol Ecol 18:203–214

    Google Scholar 

  • Graham GC (2006) Phylogenetics of the Australian Dacinae. Unpublished PhD Theis, School of Integrative Biology, The University of Queensland, Brisbane

    Google Scholar 

  • Graham JH, Roe KE, West TB (1993) Effects of lead and benzene on the developmental stability of Drosophila melanogaster. Ecotoxicology 2:185–195

    CAS  PubMed  Google Scholar 

  • Gumiel M et al (2003) Wing geometry in Triatoma infestans (Klug) and T. melanosome Martinez, Olmedo & Carcavallo (Hemiptera: Reduviidae). Syst Entomol 28(2):173–180. https://doi.org/10.1046/j.13365-3113.2003.00206.x

  • Hassall C (2015) Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera). PeerJ 3:e1219. https://doi.org/10.7717/peerj.1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedges SB, Marin J, Suleski M, Paymer M, Kumar S (2015) Tree of life reveals clock like speciation and diversification. Mol Biol Evol 32(4):835–845. https://doi.org/10.1093/molbey/msv037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendi A (1975) Untersuchungen iiberintra- und interspezifische Konkurrenzbei vier Blattlausarten an Vicia faba. PhD dissertation. Justus Leibig-Universitat Giessen, Germany 62

  • Hill MP, Terblanche JS (2014) Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. PLoS One 9(2):E90121. https://doi.org/10.1371/journal.pone.0090121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu F, Zhang Guo-Na, Jia Fu-Xian, Dou W, Wang Jin-Jun (2010) Morphological characterization and distribution of Antennal sensilla of six fruit flies (Diptera: Tephritidae). Ann Entomol Soc Am 103(4):661–670. https://doi.org/10.1603/AN09170

    Article  Google Scholar 

  • Ito Y (2005) Effect of eradication of the Oriental fruit fly, Bactrocera dorsalis, On the population density of the melon fly, Bactrocera cucurbitae, In the Ryukyu Archipelago, estimated from the number of male flies captured by attractant traps. Appl Entomol Zool 40(4):625–630. https://doi.org/10.1303/aez.2005.625

    Article  Google Scholar 

  • Jaureguy LM, Etges WJ (2007) Assessing patterns of senescence in Drosophila mojavensis reared on different host cacti. Evol Eco Res 9:91–107

    Google Scholar 

  • Jeffries M, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286

    Google Scholar 

  • Jolliffe LT (2002) Principal component analysis, 2nd edn. Springer. New York, Ny, USA

    Google Scholar 

  • Karban R (1986) Interspecific competition between folivorous insects on Erigeron glaucus. Ecology 67:1063–72

    Google Scholar 

  • Kark S (2001) Shifts in bilateral asymmetry within a distribution range: the case of the chucar partridge. Evolution 55:2088–2096

    CAS  PubMed  Google Scholar 

  • Kark S, Lens I, Van Dongen S, Schmidt E (2004) Asymmetry patterns across the distribution range: does the species matter? Biol J Linn Soc 81:313–324

    Google Scholar 

  • Khamis FM, Masiga DK, Mohamed SA, Salifu D, Meyer MD, Ekesi S (2012) Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: Concordance in morphometry and DNA Barcoding. PLoS One 7(9):e44862. https://doi.org/10.1371/journal.pone.0044862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitthawee S, Rungsri N (2011) Different in wing shape in the Bactrocera tau (Walker) complex on a single fruit species of Thailand. Sci Asia 37:308–313. https://doi.org/10.2306/scienceasia1513-1874.2011.37.308

    Article  Google Scholar 

  • Klingenberg CP, McIntyre GS (1998) Geometric morphometric of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375

    PubMed  Google Scholar 

  • Klingenberg CP (2009) Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori-hypotheses. Evol Dev 11:405–421

    PubMed  PubMed Central  Google Scholar 

  • Klingenberg CP (2011) Morpho J: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  Google Scholar 

  • Klingenberg CP (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226(3):113–137

    PubMed  PubMed Central  Google Scholar 

  • Klingenberg CP, Gidaszewski NA (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol 59:245–261

    CAS  PubMed  Google Scholar 

  • Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 54:678–688

    PubMed  Google Scholar 

  • Klingenberg CP, McIntyre GS, Zaklan SD (1998) Left-right asymmetry of fly wings and the evolution of body axes. Proc R Soc Ser B 265:1255–1259

    CAS  Google Scholar 

  • Krosch MN et al (2012) Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis S.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol. https://doi.org/10.1111/j.1365-3113.2012.00643.x

  • Krosch MN, Schutze MK, Armstrong KF, Graham GC, Yeates DK, Clarke AR (2012) A molecular phylogeny for the tribe Dacini (Diptera: Tephritidae): Systematic and biogeographic implications. Mol Phylogenet Evol 64:513–523

    Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: A resource for Timelines, TimeTree and Divergence times. Mol Biol Evol 34(7):1812–1819. https://doi.org/10.1093/molbev/msx116

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution applied to brain: body size allometry. Evolution 33:402–416

    PubMed  Google Scholar 

  • Laurin M (2004) The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53:594–622

    PubMed  Google Scholar 

  • Lazic MM, Kaliontzopoullou A, Carretero MA, Crnobrnja-Isailovic J (2013) Lizards from urban areas are more asymmetric: using fluctuating asymmetry to evaluate environmental disturbance. PLoS One 8:e84190

  • Lens I, Dongen S, Wilder CM, Brooks TM, Matthysen E (1999) Fluctuating asymmetry increases with habitat disturbance in seven bird species of a fragmented afrotropical forest. Proc R Soc Ser B 266:1241–1246

    Google Scholar 

  • Lezcano AH, Quiroga MLR, Liberoff AI, Van Der Molen S (2015) Marine pollution effects on the southern surf crab Ovallipes trimaculatus (Crustacea: Brachyura: Polybiidae) in Patagonia Argentina. Mar Pollut Bull 91:524–529

    CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mackay TFC (2004) The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev 14:253–257

    CAS  PubMed  Google Scholar 

  • Maddison WP (1991) Squared-change parsiomony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst Zool 40:304–314

    Google Scholar 

  • Maddison WP, Maddison DR (2016) Mesquite a: modular system for evolutionary analysis. Version 3.10. http://mesquiteproject.org

  • Mahima KV, Anand PP, Seena S, Shameema K, Manogem EM, Shibu Vardhanan Y (2021) Caste-specific phenotypic plasticity of female caste system of Asian weaver ants: Revealing the allometric and non-allometric component of female caste system of Oecophylla smaragdina (Hymenoptera: Formicidae) by using geometric morphometrics. Sociobiology 68(2):e5941. https://doi.org/10.13102/sociobiology.v68i2.5941

    Article  Google Scholar 

  • Mayhew PJ (2007) Why are there so many insect species? Perspective from fossils and phylogenies. Biol Rev 82:425–454

    PubMed  Google Scholar 

  • Meyer MD, Delatte H, Mwatawala M, Quilici S, Vayssieres J-F, Virgilio M (2015) A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, Tephritidae) in Africa, with list a of species included in Zeugodacus. Zookeys 540:539–557. https://doi.org/10.3897/zookeys.540.9672

    Article  Google Scholar 

  • Michaux B (1996) The origin of southwest Sulawesi and other Indonesian terranes: a biological review. Paleogeogr Paleoclimatol Paleoecol 122:167–83

    Google Scholar 

  • Miller RS (1967) Pattern and process in competition. Adv Ecol Res 4:1–74

    Google Scholar 

  • Monteiro IR (1999) Multivariate regression models and geometric morphometrics: The search for casual factors in the analysis of shape. Syst Biol 48:192–199

    CAS  PubMed  Google Scholar 

  • Munoz-Munoz F et al (2016) Drosophila wing modularity revisited through a quantitative genetic approach. Evolution 70(7):1530–1541

    PubMed  Google Scholar 

  • Muraji M, Nakahara S (2001) Phylogenetic relationships among fruit flies, Bactrocera (Diptera: Tephritidae), based on the mitochondrial rDNA sequences. Insect Mol Biol 10:549–559

    CAS  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalis: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond Ser B Biol Sci 316:337–419

    Google Scholar 

  • Palmer AR (1994) Fluctuating asymmetry analysis: a primer. In: Markow TA (ed) Development instability: Its origins and evolutionary implications. Kluwer, Academic Publishers, Dordrecht, pp 335–364

    Google Scholar 

  • Palmer AR, Strobeck C (2003) Fluctuating asymmetry analysis revisited. In: Polak M (ed) Developmental instability (DI): causes and consequences. Oxford University Press, Oxford, pp 279–319

    Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Ann Rev Ecol Syst 17:391–421

    Google Scholar 

  • Pelabon C, Hansen TF (2008) On the adaptive accuracy of directional asymmetry in insect wings size. Evolution 62:2855–2867

    PubMed  Google Scholar 

  • Pelabon C, Firmat C, Bolstad HG, Voje LK, Houle D, Cassara J, Rouzic LA, Hansen FT (2014) Evolution of morphological allometry. Ann N Y Acad Sci 1320:58–75

    Google Scholar 

  • Pieterse W, Benitez HA, Addison P (2017) The use of geometric morphometric analysis to illustrate the shape change induced by different fruit hosts on the wing shape of Bactrocera dorsalis and Ceratitis capitate (Diptera: Tephritidae). Zool Anzeiger 269:110–116. https://doi.org/10.1016/j.jcz.2017.08.004

    Article  Google Scholar 

  • Qin Y-J et al (2018) Population structure of a global agriculture invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol Appl 11:1990–2003. https://doi.org/10.1111/eva.12701

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray RP, Nakata T, Henningsson P, Bomphrey RJ (2016) Enhanced flight performance by genetic manipulation of wing shape in Drosophila. Nat Commun 7:10851. https://doi.org/10.1038/ncomms10851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ, Corti M (2000) The use of two-block partial squares to study covariation in shape. Sys Biol 49:740–753

    CAS  Google Scholar 

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    CAS  PubMed  Google Scholar 

  • Rohlf FJ (2015) The tps series of software. Hystrix Ital J Mammal 26:9–12

    Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of Procrustes method for the optimal superimposition of landmarks. Syst Biol 39(1):40–59

    Google Scholar 

  • Saigusa T (2006) Homology of wing venation of Diptera. Private publication, Fukuoka, Japan

    Google Scholar 

  • San Jose M et al (2018) Tracking the origins of fly invasions; using mitochondrial haplotype diversity to identify potential source populations in two genetically intertwined fruit fly species (Bactrocera carambolae and Bactrocera dorsalis [Diptera: Tephritidae]). J Econ Entomol 1–13

  • Schutze MK et al (2015) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic change based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst Entom 40:456–471. https://doi.org/10.1111/sys.12113

    Article  Google Scholar 

  • Schutze MK et al (2012a) Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in sooutheast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing shape data. BMC Evol Biol 12(130). http://www.biomedcentral.com/1471-2148/12/130

  • Schutze MK, Jessup A, Clarke AR (2012b) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Soc 102:103–111. https://doi.org/10.1017/s0007485311000423

    Article  CAS  Google Scholar 

  • Scriven JJ, Whitehorn PR, Goulson D, Tinsley MC (2016) Niche partitioning in a sympatric cryptic species complex. Ecol Evol 6(5):1328–1339. https://doi.org/10.1002/ece3.1965

    Article  PubMed  PubMed Central  Google Scholar 

  • Sookar P, Haq I, Jessup A, Mclnnis D, Franz G, Wornoayporn V, Permalloo S (2010) Mating compatibility among Bactrocera cucurbitae (Diptera: Tephritidae) populations from three different origins. J Appl Entomol 137:69–74. https://doi.org/10.1111/j.1439-0418.2010.01576.x

    Article  Google Scholar 

  • Soto IM, Carreira VP, Soto EM, Hasson E (2008) Wing morphology and fluctuating asymmetry depend on the host plant in Cactophilic Drosophila. J Evol Biol 21:598–609. https://doi.org/10.1111/j.1420-9101.2007.01474.x

    Article  CAS  PubMed  Google Scholar 

  • Stiling PD, Strong DR (1983) Weak competition among Spartina stem borers, by means of murder. Ecology 64:770–78

    Google Scholar 

  • Stolo IM, Carreira VP, Corio C, Soto EM, Hasson E (2010) Host use and developmental instability in the cactophilic sibling species Drosophila gouveat and D. antonietae. Entomol Exp Appl 137:165–175

    Google Scholar 

  • Strong DR (1982) Harmonious coexistence of hispine beetle on Heliconia in experimental and natural communities. Ecology 63:1039–1049

    Google Scholar 

  • Strong DR, Lawton JH, Southwood R (1984) Insects on plants: community patterns and Mechanisms. Blackwell, Oxford, p 313

    Google Scholar 

  • Thornhill R (1992) Fluctuating asymmetry and the mating system of the Japanese scorpion fly. Panorpa japonica. Am Behav 44(5):867–879. https://doi.org/10.1016/s0003-3472(05)80583-4

    Article  Google Scholar 

  • Ushio S (1981) A list of host plants of the oriental fruit fly and the melon fly (Mimeographed report). Plant quarantine office, Ministry of Agriculture, Yokohama, Japan 20

  • Villemant C, Simbolotti G, Kenis M (2007) Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Syst Entomol 32(4):625–634. https://doi.org/10.1111/j.1365-3113.2007.00389.x

    Article  Google Scholar 

  • Virgilio M, Jordaens K, Verwimp C, White IM, Meyer MD (2015) Higher phylogeny of fruigivorous flies (Diptera, Tephritidae, Dacini): Localised partition conflicts and a novel generic classification. Mol Phyl Evol 85:171–179. https://doi.org/10.1016/j.ympev.2015.01.007

  • Vyskocilova S, Tay WT, Brunschot SV, Seal S, Colvin J (2018) An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 8:10886. https://doi.org/10.1038/s41598-018-29305-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931

  • Weems HV Jr, Heppner JB (2001) Melon fly, Bactrocera cucurbitae Coquillett (Insecta: Diptera: Tephritidae). Florida Department of Agriculture and Consuer Services, Division of Plant Industry, and T.R. Fasulo, University of Florida. University of Florida Publications EENY-199

  • Wootton RJ (1992) Functional morphology of insect wings. Ann Rev Entomol 37:113–140

    Google Scholar 

  • Xia S, Pannebakker BA, Groenen MA, Zwaan BJ, Bijma P (2020) Quantitative genetics of wing morphology in the parasitoid wasp Nasonia vitripennis: hosts increase sibling similarity. Heredity 125:40–149. https://doi.org/10.1038/s41437-020-0318-8

  • Yaakop A, Ibrahim NJ, Shariff S, Zain BMMd (2015) Molecular clock analysis of five Bactrocera species flies (Diptera: Tephritidae) based on combination of COI and NADH sequences. Orient Insects. https://doi.org/10.1080/00305316.2015.1081421

    Article  Google Scholar 

  • Yu DJ, Xu L, Nardi F, Li JG, Zhang RJ (2007) The complete nucleotide sequence of the mitochondrial genome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 396:66–74

    CAS  PubMed  Google Scholar 

  • Zaelor J, Kitthawee S (2018) Geometric morphometric and molecular evidence suggest a new fruit fly species in Bactrocera (Zeugodacus) tau complex (Diptera: Tephritidae). Zool Syst 43(1):27–36. https://doi.org/10.11865/zs.201803

    Article  Google Scholar 

  • Zhang B, Liu YH, Wu WX, Wang ZL (2010) Molecular phylogeny of Bactrocera species (Diptera: Tephritidae: Dacini) inferred from mitochondrial sequences of 16s rDNA and COI sequences. Flo Entomol 93:369–377

    CAS  Google Scholar 

  • Zhou Z-S, Chen Z-P, Xu Z-F (2010) Niches and interspecific competitive relationships of the parasitoids, Microplitis prodeniae and Campoletis chlorideae, of the Oriental leafworm moth, Spodoptera litura, in tobacco. J Insect Sci 10(10)

  • Zikic V, Stankovic SS, Petrovic A, Milosevic M, Tomanovic Z, Klingenberg CP, Ivanovic A (2017) Evolutionary relationship of wing venation and wing size and shape in Aphidiinae (Hymenoptera: Braconidae). Org Divers Evol 17:607–617. https://doi.org/10.1007/s13127-017-0338-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Zoology, University of Calicut for providing the infrastructural facility. The present study financially supported by UGC-SAP (F.3-6/2012 (SAP-II) dated 10.10.2012).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PPA. Conceived and designed the experiment: PPA & YSV. Digitalization and landmarking of specimen: KK. Software: PPA & YSV. Analyzation and interpretation of the data: PPA, KK, SS & YSV. Wrote the main manuscript: PPA. Drawing & photographic plate preparation: YSV. Supervision: YSV. All authors reviewed the manuscript.

Corresponding authors

Correspondence to P. P. Anand or Y. Shibu Vardhanan.

Ethics declarations

Conflict interest

The authors declare they have no known financial interests or personal relationships that could appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, K., Anand, P.P., Seena, S. et al. Wing phenotypic plasticity, quantitative genetics, modularity, and phylogenetic signal analysis revealed the niche partitioning in two fruit fly species, Bactrocera dorsalis and Zeugodacus cucurbitae. Int J Trop Insect Sci 42, 1487–1504 (2022). https://doi.org/10.1007/s42690-021-00668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00668-4

Keywords

Navigation