Skip to main content
Log in

Potential toxic effects of aqueous leaf extracts of Calotropis gigantea and Croton laccifera against Aphis craccivora

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Plant-derived insecticides represent one of the best alternatives to synthetic chemicals. In this study, aqueous leaf extracts of Calotropis gigantea (Euphorbiaceae) and Croton laccifera (Apocynaceae) on 1st (N1) and 2nd instar (N2) nymphs, and newly emerged apterous females (AF) of cowpea aphid Aphis craccivora (Koch) (Homoptera: Aphididae) was determined for their contact, residual and systemic toxicities, using Yard-long bean plants. Compared to the untreated controls, both leaf extracts affected survivorship of all aphid stages tested, as well as nymphal production of AF. Systemic and contact toxicity had a great impact on A. craccivora while no strong toxicity was detected in residual bioassay with the two plant extracts. Stronger effects were recorded in N1 compared to N2 and AF. In all three bioassays, C. gigantea outperformed C. laccifera in terms of mortality and reduction of fecundity. Botanical insecticides on the basis of leaf extracts of C. gigantea and C. laccifera are interesting candidates for integrated management of A. craccivora on Yard-long beans. Thus, further large-scale field trials with these compounds are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

If necessary willing to provide data.

References

  • Ahmed AAI, Gesraha MA, Zebitz CPW (2007) Bioactivity of two neem products on Aphis fabae. J Appl Sci Res 3:392–398

    Google Scholar 

  • Ahmed M, Qin P, Zumin G, Yuyang L et al (2020) Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci Rep 10:522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar Y, Isman MB (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In: Insecticides design using advanced technologies (eds). Ishaaya I, Nauen R, Horowitz AR, Springer-Verlag, H. ISBN: 10–3–540–46904, pp. 235–258

  • Alexander IC, Keith OP, Percy M, Lawrence ADW (1991) An insecticidal diterpene from Croton linearis. Phytochemistry 30:1801–1803

    CAS  Google Scholar 

  • Ambethar V (2009) Potential of entomo-pathogenic fungi in insecticide resistance management (IRM): a review. J Biopestic 2:177–193

    Google Scholar 

  • Ano AO, Ubochi CI (2008) Nutrient composition of climbing and prostrate vegetable cowpea accessions. African J Biotech 7:3795–3798

    CAS  Google Scholar 

  • Anonymous (2021) http://www.biotik.org/india/species/c/crotlacc/crotlacc_en.html. Accessed on 14.07.2021

  • Arulprakash R, Senthilkumar P (2005) Effect of Calotropis gigantea R. Br. on the pulse beetle, Callosobrochos maculatus (Fab.). Insect Environ 11:71–72

    Google Scholar 

  • Ateyyat M, Abu-Romman S, Abu-Darwish M, Ghabeish I (2012) Impact of Flavonoids against Woolly Apple Aphid, Eriosoma lanigerum (Hausmann) and Its Sole Parasitoid, Aphelinus mali (Hald.). J Agric Sci 4:227–236

    Google Scholar 

  • Bandara BMR, Wimalasiri WR, Bandara KANP (1987) Isolation and insecticidal activity of (-)-hardwickiic acid from Croton aromaticus. Planta Med 53:575

    CAS  PubMed  Google Scholar 

  • Bandara BMR, Wimalasiri WR, Balsubramanium S (1988) Chemotaxonomic studies of Croton species in Sri Lanka. J Natn Sci Coun Sri Lanka 16:87–95

    Google Scholar 

  • Bandara BMR, Wimalasiri WR, Wickramasinghe WA, Bandara KANP (1990) Cyperenoic acid and hardwickii acid isolated from the chloroform extract of the root of C. aromaticus. J Natn Sci Coun Sri Lanka 18:119–126

    CAS  Google Scholar 

  • Bandara KANP (1987) Investigation of three species of Sri Lankan plants to evaluate their potential use in the control of Aphis craccivora (Homptera: Aphididae). Dissertation of Master of Philosophy, Post-graduate institute of Agriculture, University of Peradeniya, Sri Lanka (abstract)

  • Baser KHC, Demircakmak B, Ermin N, Demirci F, Boyday I (1998) The essential oil of Bifora radians. Bieb J Essent Oil Res 10:451–452

    CAS  Google Scholar 

  • Bashir M, Ahmad Z, Ghafoor A (2002) Cowpea germplasm evaluation for virus resistance under greenhouse conditions. Asian J Plant Sci 1:585–587

    Google Scholar 

  • Berberet RC, Giles KL, Zarrabi AA, Payton ME (2009) Development, reproduction, and within-plant infestation patterns of Aphis craccivora (Homoptera: Aphididae) on alfafa. Environ Entomol 38:1765–1771

    CAS  PubMed  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: an identification and information guide. Wiley, Chichester

    Google Scholar 

  • Boman HG (1980) Insect responses for microbial infections. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic Press, New York, pp 769–744

    Google Scholar 

  • Brader G, Wurs G, Greger H (1992) Organ-specific accumulation of novel prenylated quinolin-2-ones from East Asian Zanthoxylum species. Planta Med 58(4692):4693

    Google Scholar 

  • Busch R, Teusch H (1992) First tentative experiments with Neem Azal -F (5% Azadirachtin) against the elder bush aphid (Aphis sambuci) and thereby observed side effect on beneficial insects (i.e. lady bird, hover flies and cantharid beetles). In: Kleeberg H (ed). Proceedings of first workshop practice-oriented results on use and production of Neem ingredients; 1992 June 19–20; Wetzlar, Germany. pp. 41–43

  • Camaroti JRSL, Almeida WA, Belmonte BR, Oliveira APS et al (2018) Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL). Ind Crop Prod 116:81–89

    CAS  Google Scholar 

  • Das BC, Sarker PK, Rahman MM (2008) Aphidicidal activity of some indigenous plant extracts against bean aphid Aphis craccivora Koch (Homoptera: Aphididae). Bidhan J Pest Sci 81:153–159

    Google Scholar 

  • Devi NI, Nelson SJ, Kannan M (2018) Effect of Calotropis gigantea (L.) W.T. Aiton. on pink mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). J Ent Res 42:503–506

    Google Scholar 

  • Dimetry NZ, Abd El-Salam AME, El-Hawary FMA (1995) Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch Phytopathol 43:700–711

    Google Scholar 

  • Dolma SK, Sharma E, Gulati A, Reddy SGE (2017) Insecticidal activities of tea saponin against diamondback moth, Plutella xylostella and aphid, Aphis craccivora. Toxin Rev 37:52–55

    Google Scholar 

  • e Silva CGV, de Oliveira JCS, da Camara CAG, (2017) Insecticidal activity of the ethanolic extract from Croton species against Plutella xylostella L. (Lepidoptera: Plutellidae). Rev Fac Nac Agro Medellín 71:8543–8551

    Google Scholar 

  • Edirisinghe JP (1994) An annonated list of aphids of Peradeniya campus, Sri Lanka. Cey J Sci Bio Sci 23:25–29

    Google Scholar 

  • Fery RL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Virginia, pp 424–428

    Google Scholar 

  • Ge Y, Liu P, Yang R, Zhang L et al (2015) Insecticidal Constituents and activity of alkaloids from Cynanchum mongolicum. Molecules 20:17483–17492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georghiou GP (1990) Overview of insecticide resistance. Symposium series 421. In: Green MB, Lebaron HM, Moberg WK (eds) Managing resistance to agrochemicals: from fundamental research to practical strategies. American Chemical Society, ACS, Washington, D.C., pp 18–41

    Google Scholar 

  • Goh HG, Kim JH, Han MW (2001) Application of Aphidius colemani Viereck for control of the aphid in greenhouse. J Asia Pac Entomol 4:171–174

    Google Scholar 

  • Gökçe A, Whalon ME, Çam H, Yanar Y, Demirtas I, Gőren N (2007) Contact and residual toxicities of 30 plant extracts to Colorado potato beetle larvae. Arch Phytopathol 40:441–450

    Google Scholar 

  • Gunarathna TVNM, Karunaratne MMSC (2009) Laboratory evaluation of some Sri Lankan plants as post-harvest grain protectants for the control of rice weevil Sitophilus oryzae. Vidyodaya J of Sci 14:69–83

    Google Scholar 

  • Hampton R, Nickerson G, Whitney P, Haunold A (2002) Comparative chemical attributes of native North American Hop, Humulus lupulus var. Lupuloides e Small Phytochemistry 61:855–862

    CAS  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Google Scholar 

  • Jackai LEN, Daoust RA (1986) Insect pests of cowpeas. Annu Rev Ent 31:95–119

    Google Scholar 

  • Jayasinghe RC, Premachandra WTSD, Neilson R (2015) A study on Maruca vitrata infestation of Yard-long beans (Vigna unguiculata subsp. Sesquipedalis). Heliyon. https://doi.org/10.1016/j.heliyon.2015.e00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanimozhi S. (2006) Determination of mode of action of Calotropis gigantea R. Br. plant parts against major vegetable pests. M.Sc. (Ag.) Thesis, Annamalai University, Annamalainagar, Tamilnadu. 63

  • Kartikar KR, Basu BD (1994) Indian medicinal plants, vol 3, 2nd edn. Lalit Mohan Basu, Allahabad, pp 1606–1609

  • Karunaratne SHPP, Damayanthi BT, Imbuldeniya V (1999) Preliminary characterization of insecticide Detoxifying esterases in some agriculturally important pests; preliminary characterization of insecticide. Sri Lanka Cey J Sc (bio Sci) 27:19–25

    Google Scholar 

  • Kim JJ, Kim KC (2008) Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. J Asia Pac Entomol 11:1–4

    Google Scholar 

  • Kortbeek RWJ, van der Gragt M, Bleeker PM (2018) Endogenous plant metabolites against insects. Eur J Plant Pathol 154:67–90

    Google Scholar 

  • Kotadia VS, Bhalani PA (1992) Residual toxicity of some insecticides against Aphis craccivora Koch. on cowpea crop. Gujarat Agric Univ Res J 17:161–164

    CAS  Google Scholar 

  • Koul O (1999) Insect growth regulating and anti-feedant effects of neem extracts and azadirachtin on two aphid species of ornamental plants. J Biosci 24:85–90

    CAS  Google Scholar 

  • Kumar D, Kumar S (2015) Calotropis gigantea (L.) Dryand – a review update. Indian J Biotech Pharm Res 3:218–230

    CAS  Google Scholar 

  • Kumar G, Karthik LKV, Bhaskara R, Kirthi AV, Rahuman AA (2012) Larvicidal, repellent and ovicidal activity of Calotropis gigantea against Culex gelidus, Culex tritaeniorhynchus (Diptera: Culicidae). J Agric Sci Technol 8:869–880

    Google Scholar 

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439–450

    Google Scholar 

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci 19:29–35

    CAS  PubMed  Google Scholar 

  • Mulla MS, Su T (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc 15:133–152

    CAS  PubMed  Google Scholar 

  • Myumi C, Maunga PR (2018) Efficacy of lantana (Lantana camara) extract application against aphids (Brevicoryne brassicae) in rape (Brassica napus) over varied periods of time. Afr J Biotechnol 17:249–254

    Google Scholar 

  • Nasser RA, Al-Mefarrej HA, Khan PR, Alhafta KH (2012) Technological properties of Calotropis procera (AIT) wood and its relation to utilizations. Am Eurasian J Agric Environ Sci 12:5–16

  • Nazar N, Goyder DJC, JJ, Mahmood T, Chase, MW, (2013) The taxonomy and systematics of Apocynaceae: where we stand in 2012. Bot J Linn Soc 71:482–490

    Google Scholar 

  • Ndunda BE (2014) Photochemistry and bioactivity investigations of three Kenyan Croton species. Ph.D. Thesis, University of Nairobi, Kenya

  • Ofuya TI (1997) Control of the cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae), in cowpea, Vigna unguiculata (L.) Walp. J Integr Pest Manag Rev 2:199–207

    Google Scholar 

  • Park HJ, Baek MY, Cho JG, Seo KH et al (2011) Insecticidal alkaloids on aphids from Corydalis turtschaninovii tubers. J Korean Soc Appl Biol Chem 54:345–352

    CAS  Google Scholar 

  • Pettersson J, Karunaratne S, Ahmed E, Kumar V (1998) The cowpea aphid, Aphis craccivora, host plant odours and pheromones. Entomol Exp Appl 88:177–184

    Google Scholar 

  • Prabhu S, Priyadharshini P, Thangamalar A (2018) Evaluation of anti-feedant activity of different parts of Calotropis gigantea against Helicoverpa armigera. J Pharmacogn Phytochem 7:2919–2922

  • Premachandra WTSD, Borgemeister C, Berndt O, Ehlers R-U, Poehling H-M (2003) Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil- dwelling stages of western flower thrips Frankliniella occidentalis. Biocontrol 48:1–13

    Google Scholar 

  • Premachandra WTSD, Borgemeister C, Poehling HM (2005) Effects of Neem and Spinosad on Ceratothripoides claratris (Shumsher) (Thysanoptera: Thripidae), an important vegetable pest in Thailand, under laboratory and greenhouse conditions. J Econ Entomol 98:438–448

    CAS  PubMed  Google Scholar 

  • Premachandra WTSD, Mampitiyarchchi M, Ebssa L (2014) Nemato-toxic potential of Betel (Piper betle L.) (Piperaceae) leaf. Crop Prot 65:1–5

  • Priyadarshani TDC, Hemachandra KS, Sirisena UGA, Wijayaguasekara HNP (2016) Developmental biology and feeding efficiency of Menochilus sexmaculatus (Coleoptera: Coccinellidae) (Fabricius) reared on Aphis craccivora (Hemiptera:Aphididae) (Koch). Trop Agric Res 27:115–122

    Google Scholar 

  • Salatino A, Salatino MLF, Negri G (2007) Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J Braz Chem Soc 18:11–33

    CAS  Google Scholar 

  • Sammour EA, Fatma El-Hawary FMA, Abdel-Aziz NF (2011) Comparative study on the efficacy of neemix and basil oil formulations on the cowpea aphid Aphis craccivora Koch. Arch Phytopathol 44:655–670

    CAS  Google Scholar 

  • Sayed SM, Alotaibi SS, Gaber N, Elarrnaouty S (2020) Evaluation of five medicinal plant extracts on Aphis craccivora (Hemiptera: Aphididae) and Its Predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Insects 11:398

    PubMed Central  Google Scholar 

  • SAS Institute (1999) SAS/STAT User’s Guide. SAS Institute, Cary, NC

  • Schmutterer H (1988) Potential of azadirachtin-containing pesticides for integrated pest control in developing and industrialized countries. J Insect Physiol 34:713–719

    CAS  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    CAS  PubMed  Google Scholar 

  • Shannag HS, Freihat CJL, NM, (2014) Efficacy of different neem-based biopesticides against green peach aphid, Myzus persicae (Hemiptera: Aphididae). Int J Agric Pol Res 2:61–68

    Google Scholar 

  • Singh BB (2005) Cowpea Vigna unguiculata (L) Walp). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol Grain. Legumes. CRC Press, Boca Raton, Florida, pp 117–162

    Google Scholar 

  • Singh SR, Jackai L (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance, and potential for control. In: Singh SR, Rachie K (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 217–231

    Google Scholar 

  • Singh BB, Mohan RDR, Dashiell LKEJ (1997) Advances in cowpea research. IITA-JIRCAS, Ibadan, Nigeria

  • Solohokara SMNJ, Jayasundera ACA, Karunathilake LPA (2015) Preliminary phytochemical screening of Calotropis gigantea (vern:arka) alkaline powder (kshara) in Ayurveda. Unique j Ayurvedic Herb Med 3:30–32

    Google Scholar 

  • Solunke BR, Deshpande SV (1991) Studies on use of plant products for control of lemon butterfly larvae. J Maharashtra Agric Univ 16:302–303

    Google Scholar 

  • Srivastava KMN, Singh LN (1986) A review of the pest complex of Kharif pulses in U.P. PANS 28:333–355

    Google Scholar 

  • Tang YQ, Weathersbee AA, Mayer RT (2002) Effect of neem seed extract on the brown citrus aphid (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes (Hymenoptera:Aphididese). Environ Entomol 31:172–176

    CAS  Google Scholar 

  • Vimala B, Murugani K, Deecaraman M, Karpagam S, Yalakshmi V, Sujatha K (2010) The toxic effect of neem extract, spinosad and endosulfan on the growth of aphids and its predator. Bioscan 5:383–386

    Google Scholar 

  • Widanapathirana CU, Dassanayake DLALA (2013) The use of plant parts in pest control activities in traditional Sri Lankan agricultural systems. Int J Sci Technol Res 2:150–152

    Google Scholar 

  • Yazdgerdian AR, Akhtar Y, Isman MB (2015) Insecticidal effects of essential oils against woolly beech aphid, Phyllaphis fagi (Hemiptera: Aphididae) and rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). J Entomol Zool Stud 3:265–271

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Zoology, University of Ruhuna, Matara, Sri Lanka, for providing space to conduct the experiments.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Ms. W.A.K.G. Thakshila performed the experiments; Analyzed and interpreted the data; Wrote the paper.; W.T.S. Dammini Premachandra: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.; Christian Borgemeister: Conceived and designed the experiments; Wrote the paper.; All authors read and approved the manuscript.

Corresponding author

Correspondence to W. T. S. Dammini Premachandra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakshila, W.A.K.G., Dammini Premachandra, W.T.S. & Borgemeister, C. Potential toxic effects of aqueous leaf extracts of Calotropis gigantea and Croton laccifera against Aphis craccivora. Int J Trop Insect Sci 42, 1165–1173 (2022). https://doi.org/10.1007/s42690-021-00632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00632-2

Keywords

Navigation