Skip to main content

Advertisement

Log in

Increased probing activities of green peach aphid (GPA), Myzus persicae, on chitosan-treated caisim (Brassica juncea) monitored by electrical penetration graph (EPG)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Green peach aphid (GPA), Myzus persicae, is a major pest of most horticulture crops. Chitosan-based pest management emerges as an alternative to pesticides due to its biocompatibility and biodegradability properties. Population growth and electrical penetration graph (EPG)-based feeding behavior studies were conducted to assess the effect of chitosan application on caisim against GPA at three concentrations (0.1%, 0.5%, and 1%) including two controls of water and acetic acid. Evident GPA population growth reduction was observed in the chitosan-treated caisim. The effect of chitosan was further monitored by 10 h of EPG recording, which revealed a significant increase in probing activities due to frequent stylet withdrawal that generated high levels of short probing activities. Additionally, inter- and intracellular stylet punctures (waveform C and potential drop-Pd, respectively) displayed a significant increase. However, once the stylet reached the phloem tissue, GPA under chitosan treatment and water control can access the phloem tissue equally, either in terms of the number and duration. Therefore, we suggest that the reduced population growth due to chitosan treatment was related to extra energy consumption during frequent stylet withdrawal and intracellular puncture. This finding indicates the role of chitosan as a plant defense elicitor. However, further investigation regarding this topic is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

References

  • Backus EA, Guedes RNC, Reif KE (2020) AC–DC electropenetrography: fundamentals, controversies, and perspectives for arthropod pest management. Pest Manag Sci. https://doi.org/10.1002/ps.6087

  • Badawy ME, Rabea EI, Steurbaut W, Rogge TM, Stevens CV, Smagghe G (2005) Insecticidal and growth inhibitory effects of new O-acyl chitosan derivatives on the cotton leafworm Spodoptera littoralis. Commun Agric Appl Biol Sci 70:817–821

    CAS  PubMed  Google Scholar 

  • Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29

    Article  Google Scholar 

  • Barribeau SM, Sok D, Gerardo NM (2010) Aphid reproductive investment in response to mortality risks. BMC Evol Biol 10:251

    Article  Google Scholar 

  • Cao HH, Liu HR, Zhang ZF, Liu TX (2017) Corrigendum: the green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci Rep 7:43076. https://doi.org/10.1038/srep43076

  • Capinera JL (2008) Green Peach aphid, Myzus persicae (Sulzer)(Hemiptera: Aphididae) Encyclopedia of Entomology:1727–1730

  • Civolani S, Marchetti E, Chicca M, Castaldelli G, Rossi R, Pasqualini E, Dindo ML, Baronio P, Leis M (2010) Probing behaviour of Myzus persicae on tomato plants containing Mi gene or BTH-treated evaluated by electrical penetration graph. Bull Insectology 63:265–271

    Google Scholar 

  • Davis JA, Radcliffe EB, Ragsdale DW (2006) Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae) Environ Entomol 35:1461–1468

  • Davis JA, Radcliffe EB, Ragsdale DW (2007) Resistance to green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), in potato cultivars. Am J Potato Res 84:259–269

  • De Backer L, Wäckers FL, Francis F, Verheggen FJ (2015) Predation of the Peach Aphid Myzus persicae by the mirid Predator Macrolophus pygmaeus on Sweet Peppers: effect of Prey and Predator Density. Insects 6:514–523. https://doi.org/10.3390/insects6020514

    Article  PubMed  PubMed Central  Google Scholar 

  • Down RE, Ford L, Woodhouse SD, Davison GM, Majerus ME, Gatehouse JA, Gatehouse AM (2003) Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid; Myzus persicae (Sulz.) and a beneficial predator (2-spot ladybird; Adalia bipunctata L.). Transgenic Res 12:229–241. https://doi.org/10.1023/a:1022904805028

    Article  CAS  PubMed  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  Google Scholar 

  • Farag SMA, Elhalag KMA, Hagag MH, Khairy ASM, Ibrahim HM, Saker MT, Messiha NAS (2017) Potato bacterial wilt suppression and plant health improvement after application of different antioxidants. J Phytopathol 165:522–537

    Article  CAS  Google Scholar 

  • Ferreira P TP et al (2019) Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Negl Trop Dis 13:e0007624

  • Fitza KN, Payn K, Steenkamp ET, Myburg AA, Naidoo S (2013) Chitosan application improves resistance to Fusarium circinatum in Pinus patula. S Afr J Bot 85:70–78

    Article  CAS  Google Scholar 

  • Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.)(Hemiptera: Aphididae). Neotrop Entomol 34:807–813

    Article  CAS  Google Scholar 

  • Harrington R, Bartlet E, Riley DK, ffrench-Constant RH, Clark SJ, (1989) Resurgence of insecticide-resistant Myzus persicae on potatoes treated repeatedly with cypermethrin and mineral oil. Crop Prot 8:340–348

    Article  CAS  Google Scholar 

  • Huang X, Liu D, Cui X, Shi X (2018) Probing behaviors and their plasticity for the aphid Sitobion avenae on three alternative host plants. PloS One 13

  • Jia X, Meng Q, Zeng H, Wang W, Yin H (2016) Chitosan oligosaccharide induces resistance to tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci Rep 6:26144

    Article  CAS  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B, Bhanu AN (2014) A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res 1:1–8

    Google Scholar 

  • Kennedy JS, Day MF, Eastop VF (1962) A conspectus of aphids as vectors of plant viruses A conspectus of aphids as vectors of plant viruses

  • Lee Y, Kim H, Kang TJ, Jang Y (2012) Stress response to acoustic stimuli in an aphid: A behavioral bioassay model. Entomol Res 42:320–329

    Article  Google Scholar 

  • Li Y, Xu Z, Shi L, Shen G, He L (2016) Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in Chongqing. China Pestic Biochem Physiol 132:21–28. https://doi.org/10.1016/j.pestbp.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AA, Kadhim JH, Kamaluddin ZNA (2018) Selection of highly virulent entomopathogenic fungal isolates to control the greenhouse aphid species in Iraq Egypt. J Biol Pest Control 28:71

    Article  Google Scholar 

  • Mwaheb MAMA et al (2017) Synergetic suppression of soybean cyst nematodes by chitosan and Hirsutella minnesotensis via the assembly of the soybean rhizosphere microbial communities. Biol Control 115:85–94

    Article  CAS  Google Scholar 

  • Orzali L, Corsi B, Forni C, Riccioni L (2017) Chitosan in agriculture: a new challenge for managing plant disease Biological activities and application of marine polysaccharides:17–36

  • Paprocka M, Gliszczyńska A, Dancewicz K, Gabryś B (2018) Novel hydroxy-and epoxy-cis-jasmone and dihydrojasmone derivatives affect the foraging activity of the peach potato aphid Myzus persicae (Sulzer)(Homoptera: Aphididae). Molecules 23:2362

    Article  Google Scholar 

  • Pascal T, Pfeiffer F, Kervella J, Lacroze JP, Sauge MH, Weber W (2002) Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’ Plant Breed 121:459–461

  • Patel S, Awasthi A, Tomar R (2004) Assessment of yield losses in mustard (Brassica juncea L.) due to mustard aphid (Lipaphis erysimi Kalt.) under different thermal environments in Eastern Central India. Appl Ecol Environ Res 2:1–15

    Article  Google Scholar 

  • Prado E, Tjallingii WF (2007) Behavioral evidence for local reduction of aphid-induced resistance. J Insect Sci 7:48

    Article  Google Scholar 

  • Rubiano-Rodriguez JA, Fuentes-Contreras E, Figueroa CC, Margaritopoulos JT, Briones LM, Ramirez CC (2014) Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in Central Chile. Bull Entomol Res 104:182–194. https://doi.org/10.1017/S000748531300062X

    Article  CAS  PubMed  Google Scholar 

  • Sahab A, Waly A, Sabbour M, Nawar LS (2015) Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid)(PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J ChemTech Res 8:589–598

    CAS  Google Scholar 

  • Sarria E, Cid M, Garzo E, Fereres A (2009) Excel Workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67:35–42

    Article  Google Scholar 

  • SAS I (2008) SAS/STAT 9.2 user’s guide. SAS Institute, Cary, NC

  • Shim J, Park J, Paik W, Lee Y (1977) Studies on the life history of green peach aphid, Myzus persicae Sulzer (Homoptera). Korean J Appl Entomol 16:139–144

    Google Scholar 

  • Shi Q, George J, Krystel J, Zhang S, Lapointe SL, Stelinski LL, Stover E (2019) Hexaacetyl-chitohexaose, a chitin-derived oligosaccharide, transiently activates citrus defenses and alters the feeding behavior of Asian citrus psyllid Horticulture research 6:1–10

  • Silva AX, Bacigalupe LD, Luna-Rudloff M, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLoS One 7:e36810. https://doi.org/10.1371/journal.pone.0036810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Filho R, Santos RH, Tavares Wde S, Leite GL, Wilcken CF, Serrao JE, Zanuncio JC (2014) Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants. PLoS One 9:e94174. https://doi.org/10.1371/journal.pone.0094174

  • Soffan A, Aldawood AS (2015) Electrical Penetration Graph monitored feeding behavior of cowpea aphid, Aphis craccivora Koch.(Hemiptera: Aphididae), on faba bean, Vicia faba L.(Fabaceae), cultivars Turkish. Entomol Derg-Tu 39:401–411. https://doi.org/10.16970/ted.16177

  • Tang QL, Ma KS, Hou YM, Gao XW (2017) Monitoring insecticide resistance and diagnostics of resistance mechanisms in the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in China. Pestic Biochem Physiol 143:39–47. https://doi.org/10.1016/j.pestbp.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF (1990) Continuous recording of stylet penetration activities by aphids. In: Campbell RK, Eikenbary RD (eds) Aphid–plant genotype interactions. Elsevier, Amsterdam, pp 89–99

    Google Scholar 

  • Wang XY, Yang ZQ, Shen ZR, Lu J, Xu WB (2008) Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom., Aphididae). J Appl Entomol 132:135–142

    Article  CAS  Google Scholar 

  • Will T, Vilcinskas A (2015) The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol 57:34–40

    Article  CAS  Google Scholar 

  • Yu Y, Shen G, Zhu H, Lu Y (2010) Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic Biochem Physiol 98:238–242

    Article  CAS  Google Scholar 

  • Vu VH, Hong SI, Kim K (2007) Selection of Entomopathogenic Fungi for Aphid Control. J Biosci Bioeng 104:498–505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the support from Applied entomology Laboratory, of Plant Protection Department, Faculty of Agriculture, Universitas Gadjah Mada, and Economic Entomology Research Unit, King Saud University for accessing and utilizing necessary facilities related to EPG monitoring. This study is part of under graduate thesis for Varsha Salsabillah.

Funding

This study was supported by Faculty of Agriculture research funding. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Soffan.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salsabillah, V., Putra, N.S., Aldawood, A.S. et al. Increased probing activities of green peach aphid (GPA), Myzus persicae, on chitosan-treated caisim (Brassica juncea) monitored by electrical penetration graph (EPG). Int J Trop Insect Sci 41, 2805–2810 (2021). https://doi.org/10.1007/s42690-021-00461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00461-3

Keywords

Navigation