Skip to main content
Log in

Effect of temperature on biological parameters of cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The whitefly, Bemisia tabaci is a highly polyphagous and most damaging insect pest of cotton and many other economically important crops throughout the world. Recently in India, whitefly threat is increasing in cotton crop. North Indian cotton growing belt experienced severe outbreak of this pests during 2014–15 causing huge yield losses. With the changing climate scenario and the polyphagous trait of B. tabaci, its infestation may quickly spread over other regions of the world. In the present study, a temperature-based phenology model is developed for B. tabaci by rearing it on cotton leaves under laboratory conditions (growth chamber) at six constant temperatures (15–37 °C). The developmental rates and survivorship of immature life stages and reproductive parameters of adult life stages of B. tabaci were estimated by fitting various non-linear mathematical equations to the temperature-dependent development data obtained in laboratory. A cohort updating and rate summation approach was employed in stochastic simulation of life table parameters at different test temperatures. The study revealed that development time decreased with increase in temperature within the evaluation range of temperatures. The life cycle of B. tabaci was shortest at 32 °C with the shortest mean development time (30 days) and the longest development time (63 days) was obtained at 17 °C. The optimum developmental temperatures predicted for various immature life stages of B. tabaci were: 20.4, 18.03, 26.83, 26.83 and 22.93 °C for egg, nymph1, nymph2, nymph3 and pseudopupa, respectively. Wang model fits well to estimate temperature-dependent mortality of B. tabaci life stages. The mortality was lower at 32 °C and higher at 37 °C. The favourable temperature range that supported optimum reproductive fitness of B. tabaci was observed to be 22–32 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available in the manuscript.

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Aneja AK (2000) Biology of whitefly, Bemisia tabaci (Gennadius) on American cotton. M. Sc. Thesis, Punjab Agricultural University, Ludhiana, India

  • Bale JS, Masters GJ, Hodkinson ID, Awmack CS, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Bao-li Q, Ren SX, Mandour NS, Li L (2003) Effect of temperature on the development and reproduction of Bemisia tabaci B biotype (Homoptera: Aleyrodidae). Insect Sci 10(1):43–49

    Article  Google Scholar 

  • Bayhan E, Ulusoy MR, Brown JK (2006) Host range, distribution, and natural enemies of Bemisia tabaci ‘B biotype’ (Hemiptera: Aleyrodidae) in Turkey. J Pest Sci 79:233–240. https://doi.org/10.1007/s10340-006-0139-4

    Article  Google Scholar 

  • Bedford ID, Markham PG (1993) A new strain of whitefly threatens crops worldwide. Grower (April 8):11–13

  • Bonato O, Lurette A, Vidal C, Fargues J (2007) Modelling temperature-dependant bionomics of Bemisia tabaci (Q-biotype). Physiol Entomol 32:50–55. https://doi.org/10.1111/j.1365-3032.2006.00540.x

    Article  Google Scholar 

  • Briere JF, Pracros P, LeRoux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28(1):22–29

    Article  Google Scholar 

  • Brown JK, Frohlich DR, Rossell RC (1995) The sweet potato or silverleaf whiteflies: biotypes of Bemisia tabaci (Gennadius) (Hom: Aleyrodidae). J Appl Entomol 113:416–423

    Google Scholar 

  • Butler GD, Henneberry TJ, Clayton TE (1983) Bemisia tabaci (Homoptera: Aleyrodidae): development, oviposition and longevity in relation to temperature. Ann Entomol Soc Am 76:310–313

    Article  Google Scholar 

  • Butter NS, Vir BK (1991) Response of whitefly, Bemisia tabaci (Genn.) to different cotton genotypes under screen house conditions. Indian J Ent 53:115–119

    Google Scholar 

  • Campbell BC, Stephen-Camphell JD, Gill R (1996) Origin and radiation of whiteflies: an initial molecular phylogenetic assessment. In: Gerling D, Mayer RT (eds) Bemisia: taxonomy, biology, damage, control and management. Intercept, London, pp 29–52

    Google Scholar 

  • Chandi RS, Kular JS (2014) Biological parameters of whitefly, Bemisia tabaci (Gennadius) on Bt and non-Bt cotton under Punjab conditions. J Exp Zool India 17(2):555–561

    Google Scholar 

  • Chandi RS, Kular JS (2015) Comparative biology of whitefly, Bemisia tabaci (Gennadius) on Bt cotton hybrids in Punjab. Indian J Ecol 42(1):40–43

    Google Scholar 

  • Cui X, Wan F, Xie M, Liu T (2008) Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. J Insect Sci 8(24):1–10. https://doi.org/10.1673/031.008.2401

    Article  Google Scholar 

  • Curry GL, Fieldman RM, Smith KC (1978) A stochastic model for a temperature dependent population. Theor Popul Biol 13:197–213

    Article  CAS  Google Scholar 

  • Drost YC, vanLenteren JC, vanRoermund HJW (1998) Life-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bull Entomol Res 88:219–229

    Article  Google Scholar 

  • Fand BB, Tonnang HEZ, Kumar M, Kamble AL, Bal SK (2014) A temperature-based phenology model for predicting development, survival and population growth potential of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Prot 55:98–108

    Article  Google Scholar 

  • Fand BB, Sul NT, Bal SK, Minhas PS (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One 10(4):e0124682. https://doi.org/10.1371/journal.pone.0124682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman TP, Buckner JS, Nelson DR, Chu CC, Henneberry TJ (2001) Stylet penetration by Bemisia argentifolii (Homoptera: Aleyrodidae) into host leaf tissue. Ann Entomol Soc Am 94:761–768

    Article  Google Scholar 

  • Greathead AH (1986) Host plant. In: Cock MJW (ed) Bemisia tabaci - literature survey on the cotton whitefly with an annotated bibliography commonwealth agricultural bureau. International Institute of Biological Control. Silkwood Park, London, pp 17–25

    Google Scholar 

  • Hameed S, Khalid S, Ehsanrut HE, Hashmi AA (1994) Cotton leaf curl in Pakistan caused by a whitefly transmitted geminivirus. Plant Dis 78:529

    Google Scholar 

  • Hilbert DW, Logan JA (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ Entomol 2:1–5

    Article  Google Scholar 

  • Horowitz AR (1983) Population dynamics of the tobacco whitefly, Bemisia tabaci (Gennadius) on cotton. Ph.D. Thesis, Tel Aviv University, Israel. pp 213

  • Hussain HS, Trehan KN (1933) Observations on the life history, bionomics and control of whitefly of cotton, Bemisia gossypiperda (M & L). Indian J Agril Sci 6:701–753

    Google Scholar 

  • IPCC (2013) Climate change 2013: the Physical Science Basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Jindal V (2004) Studies on mechanisms of resistance to whitefly Bemisia tabaci (Gennadius), in cotton, Gossypium hirsutum Linnaeus. Ph.D. Dissertation, Punjab Agricultural University, Ludhiana, India

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) Analytical model for description of temperature dependent phenomena in arthropods. Environ Entomol 5:1113–1140. https://doi.org/10.1093/ee/5.6.1133

    Article  Google Scholar 

  • Luan JB, Ruan YM, Zhang L, Liu SS (2008) Pre-copulation intervals, copulation frequencies, and initial progeny sex ratios in two biotypes of whitefly, Bemisia tabaci. Entomol Exp Appl 129:316–324

    Article  Google Scholar 

  • Martin JH (1999) The whitefly fauna of Australia (Sternorrhyndha: Aleyrodidae): a taxonomic account and identification guide (pp. 197). Commonwealth Scientific and Industrial Research Organization, Canberra, Australia (CSIRO Entomology Technical Paper No. 38)

  • Martin JH, Mifsud D, Rapisarda C (2000) The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean basin. Bull Entomol Res 90:407–448

    Article  CAS  Google Scholar 

  • Mohanty AN, Basu AK (1987) Biology of whitefly vector Bemisia tabaci Genn. on four host plants throughout the year. J Entomol Res Soc 1:15–18

    Google Scholar 

  • Morales-Ramos JA, Rojas GM (2017) Temperature-dependent biological and demographic parameters of Coleomegilla maculata (Coleoptera: Coccinellidae). J Insect Sci 17(2):55 1-9

    Article  Google Scholar 

  • Mound LA, Halsey SH (1978) Whitefly of the world: a systematic catalogue of the aleyrodidae (Homoptera) with host plant and natural enemy data. British museum (natural history). Wiley, Chichester-New York-Brisbane, p 340

    Google Scholar 

  • Naranjo SE (2001) Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Prot 20:835–852

    Article  Google Scholar 

  • Natarajan K, Sundramurthy VT, Basu AK (1986) Meet the menace of whitefly to cotton. Indian Farming 36:37–44

    Google Scholar 

  • Nava-Camberos U, Riley DG, Harris MK (2001) Temperature and host plant effects on development, survival, and fecundity of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 30:55–63

    Article  Google Scholar 

  • Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723

    Article  Google Scholar 

  • Peddu H, Fand BB, Sawai HR, Lave NV (2020) Estimation and validation of developmental thresholds and thermal requirements for cotton pink bollworm Pectinophora gossypiella. Crop Prot 127:104984. https://doi.org/10.1016/j.cropro.2019.104984

    Article  CAS  Google Scholar 

  • Rao NV, Reddy AS (1989) Seasonal influence on the development duration of whitefly (Bemisia tabaci) in upland cotton (Gossypium hirsutum). Indian J Agric Sci 59:283–285

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  CAS  Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  CAS  Google Scholar 

  • Sharpe PJH, Curry GL, DeMichele DW (1977) Distribution models of organism development times. J Theor Biol 66:21–38

    Article  CAS  Google Scholar 

  • Singh J, Sohi AS, Mann HS, Kapur SP (1994) Studies on whitefly, Bemisia tabaci (Genn.) transmitted cotton leaf curl disease in Punjab. J Insect Sci 7(2):194–198

    CAS  Google Scholar 

  • Stansly PA, Naranjo SE (2010) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, p 540

    Book  Google Scholar 

  • Stinner RE, Gutierrez AP, Butler JRGD (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524

    Article  Google Scholar 

  • Sukhija HS, Butter NS, Singh J (1986) Determination of the economic threshold of whitefly, Bemisia tabaci (Genn.) on American cotton in the Punjab. Trop Pest Manag 32:134–136

    Article  Google Scholar 

  • Tonnang EZH, Juarez H, Carhuapoma P, Gonzales JC, Mendoza D, Sporleder M, Simon R, Kroschel J (2013) ILCYM- insect life cycle modeling. A software package for developing temperature-based insect phenology models with applications for local, regional and global analysis of insect population and mapping. International Potato Center, Lima, p 193

    Google Scholar 

  • Wang R, Lan Z, Ding Y (1982) Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol Sin 2:47–57

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support and necessary facilities from Head, Department of Entomology, PAU, Ludhiana for carry out this study. We are also thankful to Dr. Naveen Aggarwal, Principal Entomologist (Insect Ecology) for reviewing the whole manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and designing of the research work (RSC): Execution of field experiments and data collection (RSC): Analysis of data and interpretation (BBF, RSC, SKK): Preparation of manuscript (SKK, RSC, BBF).

Corresponding author

Correspondence to Ravinder Singh Chandi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandi, R.S., Kataria, S.K. & Fand, B.B. Effect of temperature on biological parameters of cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Int J Trop Insect Sci 41, 1823–1833 (2021). https://doi.org/10.1007/s42690-020-00397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00397-0

Keywords

Navigation