Skip to main content
Log in

Mulberry pyralid haemocyts, a structural and functional study

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The humoral and cellular defenses are crtitical in insects’ immunity. In the present study we focused on individual haemocyt types of mulberry pyralid, Glyphodes pyloalis Walker (Lep.; Pyralidae) and examined them for the first time by light, differential interference contrast, scanning and transmission electron microscopy. Like many lepidopterous insects five types of haemocytes were identified; prohaemocytes, plasmatocytes, granulocytes, oenocytoids and spherulocytes. The small, rounded to ovoid cells with homogenous cytoplasm and large nuclei compared to cytoplasm were designated as prohaemocyts. The plasmatocytes were polymorphic and variable in sizes. The oval to spherical cells, with plenty of rough endoplasmic reticula, mitochondria, and microtubules in the cytoplasm were designated as the granulocytes. The oenocytoids were round or spherical with elongated eccentric nucleus and cytoplasm with small mitochondria and few rough endoplasmic reticula. Total haemocyte counts in different larval instars showed that THC increases as the larval age increase. Differential counts of haemocytes revealed the plasmatocytes and granulocytes as the most abundant haemocyte types in comparison with other types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akai H, Sato S (1971) An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J Insect Physiol 17:1665–1676

    Google Scholar 

  • Akai H, Sato S (1973) Ultrastructure of the larval hemocytes of the silkworm Bombyx mori L. (Lepidoptera: Bombycidae). Int J Insect Morph Embryol 2:207–231

    Google Scholar 

  • Amaral IMR, Neto JFM, Pereira GB, Franco MB, Beletti ME, Kerr WE, Bonetti AM, Ueira-Vieira C (2010) Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): cell types and their role in phagocytosis. Micron 41:123–129

    PubMed  Google Scholar 

  • Beaulaton J (1979) Haemocyts and hemocytopoiesis in silkworms. Biochem Mol Biol 61:157–164

    CAS  Google Scholar 

  • Beetz S, Holthusen TK, Koolman J, Trenczek T (2008) Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 67:63–75

    CAS  PubMed  Google Scholar 

  • Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F (2020) Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genom. https://doi.org/10.1186/s12864-019-6396-4

    Article  Google Scholar 

  • Borges AR, Santos PN, Furtado AF, Figueiredo RCBQ (2008) Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron 39:486–494

    CAS  PubMed  Google Scholar 

  • Beckage NE (2008) Insect immunology, 348 pp. Academic Press, New York

    Google Scholar 

  • Chain BM, Leyshon-Soland K, Siva-Jothy MT (1992) Haemocyte heterogeneity in the cockroach Periplaneta americana analyzed using monoclonal antibodies. J Cell Sci 103:1261–1267

    Google Scholar 

  • Chapman RF (2013) The insects structure and function. Edited by S. T. Simpson and A. E. Douglas, Cambridge University Press. pp 88–93

  • Chiang AS, Gupta AP, Han SS (1988) Arthropod immune system: I. Comparative light and electron microscopy accounts of immunocytes and other hemocytesof Blattella germanica (Dictyoptera: Blattellidae). J Morphol 198:257–267

    CAS  PubMed  Google Scholar 

  • Clark KD, Strand MR (2013) Hemolymph melanization in the silkmoth Bombyx mori involves formation of a high molecular mass complex that metabolizes tyrosine. J Biol Chem 288:14476–14487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftherianos I, Revenis C (2011) Role and importance of phenoloxidase in insect hemostasis. J Innate Immun 3:28–33

    CAS  PubMed  Google Scholar 

  • Falleiros AMF, Bombonato MTS, Gregório EA (2003) Ultrastructural and quantitative studies of hemocytes in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Pyralidae). Braz Arch Biol Technol 46:287–294

    Google Scholar 

  • Gardiner EMM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164

    CAS  PubMed  Google Scholar 

  • García-Robles I, De Loma J, Capilla M, Roger I, Boix-Montesinos P, Carrió P, Vicente M, López-Galiano J, DoloresReal M, Rausell C (2020) Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. Dev Comp Immunol 104:103525

    PubMed  Google Scholar 

  • Gupta AP (1979) Hemocyte types: their structures,synonymies, interrelationships, and taxonomic significance. In: Gupta AP (ed) Insect Hemocytes. Cambridge University Press,Cambridge, p 85–127

  • Gupta AP (1985) Cellular elements in the hemolymph. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, Oxford, pp 402–444

    Google Scholar 

  • Ghosh E, Venkatesan R (2019) Plant Volatiles Modulate Immune Responses of Spodoptera litura. J Chem Ecol 45:715–724

    CAS  PubMed  Google Scholar 

  • Gongqing W, Yi L, Ying D, Yunhong Y (2016) Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue Cell 48(4). https://doi.org/10.1016/j.tice.2016.06.007

  • Grigorian M, Hartenstein V (2013) Hematopoiesis and hematopoietic organs in arthropods. Dev Genes Evol 223:103–115

    CAS  PubMed  Google Scholar 

  • Hosamani V, Yalagi M, Sasvihalli P, Hosamani V, Nair KS, Harlapur VK, Hegde CR, Mishra RK (2020) Sucking pest and their management in mulberry (Morus alba): a review. Int J Chem Stud 8:1065–1070

  • Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–118

    CAS  PubMed  Google Scholar 

  • Huang F, Yang YY, Shi M, Li JY, Chen ZQ, Chen FS, Chen XX (2010) Ultrastructural and functional characterization of circulating hemocyte from Plutella xylostella larva: cell types and their role in phagocytosis. Tissue Cell 42(6):360–364

    PubMed  Google Scholar 

  • Hypša V, Grubhoffer L (1997) Two haemocyt populations in Triatoma infestans: ultrastructural and lectin-binding characterization. Folia Parasitol 44:62–70

    Google Scholar 

  • Istkhar, Chaubey AK (2018) Challenging the larvae of Helicoverpa armigera and assessing the immune responses to nematode-bacterium complex. Phytopara 46:75–87

    Google Scholar 

  • Jalali J, Salehi R (2008) The hemocyte types, differential and total count in Papilio demoleus L. (Lepidoptera: Papilionidae) during post-embryonic development. Mun Ent Zool 3:199–216

    Google Scholar 

  • Jones JC (1962) Current concepts concerning insect haemocytes. Am Zool 2:209–246

    Google Scholar 

  • Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105

    CAS  PubMed  Google Scholar 

  • Khosravi R, Jalali Sendi J (2010) Biology and demography of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) on mulberry. J Asia Pac Entomol 13:273–276

    Google Scholar 

  • Khosravi R, Sendi JJ, Brayner FA, Alves LC, Feitosa APS (2016) Hemocytes of the Rose Sawfly Arge ochropus (Gmelin) (Hymenoptera: Argidae). Neotrop Entomol 45:58–65

    CAS  PubMed  Google Scholar 

  • Kiuchi T, Aoki F, Nagata M (2008) Effects of high temperature on the hemocyte cell cycle in silkworm larvae. J Insect Physiol 54:454–461

    CAS  PubMed  Google Scholar 

  • Kiger JA, Natzle JE, Green MM (2001) Hemocytes are essential for wing maturation in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:10190–10195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprou I, Mamali I, Dallas K, Fertakis V, Lampropoulou M, Marmaras VJ (2007) Distinct signaling pathways promote phagocytosis of bacteria, latex beads and lipopolysaccharide in medfly hemocytes. Immunology 121:314–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect haemocyts and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    CAS  PubMed  Google Scholar 

  • Li T, Yan D, Wang X, Zhang L, Chen P (2019) Hemocyte changes during immune melanization in Bombyx mori infected with Escherichia coli. Insects 10:301

  • Ling E, Shirai K, Kanekatsu R, Kiguchi K (2005) Haemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: Prohaemocyts have the function of phagocytosis. Cell Tissue Res 320:535–543

    PubMed  Google Scholar 

  • Madyarov SR, Khamraev AS, Otarbaev DO, Kamita SG, Hammock BD (2006) Comparative effects of wild and recombinant baculoviral insecticides on Glyphodes pyloalis and mulberry silkworm Bombyx mori, pp. 230–231. In International Workshop on Silk Handcrafts Cottage Industries and Silk Enterprises Development in Africa, Europe, Central Asia and the Near East, & Second Executive Meeting of Black, Caspian seas and Central Asia Silk Association (BACSA), 6–10 March, Bursa, Turkey

  • Mahadeva A (2018) Insect pest infestation, an obstacle in quality mulberry leaves production. Asian J Biol Sci 11:41–52

    CAS  Google Scholar 

  • Manachini B, Arizza V, Parrinello D, Parrinello N (2011) Haemocyts of Rhynchophoru ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. J Invertebr Pathol 106:360–365

    PubMed  Google Scholar 

  • Manjula P, Lalitha K, Vengateswari G, Patil J, Senthil Nathan S, Shivakumar MS (2020) Effect of Manihot esculenta (Crantz) leaf extracts on antioxidant and immune system of Spodoptera litura (Lepidoptera: Noctuidae). Biocatal Agri Biotech https://doi.org/10.1016/j.bcab.2019.101476

  • Moallem Z, Karimi-Malati A, Sahragard A, Zibaee A (2017) Modeling temperature-dependent development of Glyphodes pyloalis (Lepidoptera: Pyralidae). J Insect Sci 37:1–8

    Google Scholar 

  • Mudoi A, Das P, Hazarika LK (2020) Hemocytes of Periplaneta americana (Blattodea: Blattidae). J Entomol Res. https://doi.org/10.5958/0974-4576.2019.00070.7

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003) Effects of silkworm paralytic peptide on in vitro hematopoiesis and plasmatocyte spreading. Arch Insect Biochem Physiol 52:163–174

    CAS  PubMed  Google Scholar 

  • Nakahara Y, Shimura S, Ueno C, Kanamori Y, Mita K (2009) Purification and characterization of silkworm hemocytes by flow cytometry. Dev Comp Immunol 33:439–448

    CAS  PubMed  Google Scholar 

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2010) Two hemocyte lineages exist in silkworm larval hematopoietic organ. PLoS ONE 8:e11816

    Google Scholar 

  • Nappi AJ, Kohler L, Mastore M (2004) Signalling pathways implicated in the cellular innate immune responses of Drosophila. Invert Surviv J 1:5–33

    Google Scholar 

  • Nardi JB, Pilas B, Ujhelyi E, Garsha K, Kanost MR (2003) Hematopoietic organs of Manduca sexta and hemocyte lineages. Dev Genes Evol 213:477–491

    PubMed  Google Scholar 

  • Neuwirth M (1974) Granular hemocytes, the main phagocytic blood cells in Calpodes ethlius (Lepidoptera, Hesperiidae). Can J Zool 52:783–784

    CAS  PubMed  Google Scholar 

  • Oftadeh M, Sendi JJ, Zibaee A, Valizadeh B (2014) Effect of four varieties of mulberry on biochemistry and nutritional physiology of mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J EntomolAcarol Res 46:42–49

    Google Scholar 

  • Okazaki T, Okudaira N, Iwabuchi K, Fugo H, Nagai T (2006) Apoptosis and adhesion of haemocyts during molting stage of silkworm, Bombyx mori. Zool Sci 23:299–304

    CAS  Google Scholar 

  • Öztürk G, Çakici O, Arikan H (2018) Morphological characterization of hemocyte types in some species belonging to Tettigoniidae and Pamphagidae (Insecta: Orthoptera). Turk J Zool 42:340–345

    Google Scholar 

  • Pandey JP, Tiwari RK (2012) An overview of insect haemocytes science and its future application in applied and biomedical fields. Am J Biochem Mol Biol 2:82–105

    Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:186–350

    Google Scholar 

  • Ribeiro C, Brehelin M (2006) Insect haemocytes: what type of cell is that? J Insect Physiol 52:417–429

    CAS  PubMed  Google Scholar 

  • Saito T, Iwabuchi K (2003) Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori haemocyt division in single-cell culture. Appl Entomol Zool 39:583–588

    Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    CAS  PubMed  Google Scholar 

  • Shao Z, Li Y, Zhang X, Ch J, Ma J, Liu Z, Wang J, Sheng S, Wu F (2020) Identification and functional study of chitin metabolism and detoxification-related genes in Glyphodes pyloalis walker (Lepidoptera: Pyralidae) based on transcriptome analysis. Int J Mol Sci 21:1904

    CAS  PubMed Central  Google Scholar 

  • Shao Z et al (2020) Identification and functional study of chitin metabolism and detoxification-related genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) based on transcriptome analysis. Int J Mol Sci 21(5) https://doi.org/10.3390/ijms21051904

  • Silva JEB, BoleliI C, Simões ZLP (2002) Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Braz J Biol 62:689–699

    CAS  PubMed  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    CAS  Google Scholar 

  • Tojo S, Naganuma F, Arakawa FK, Yokoo S (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46:1129–1135

    CAS  PubMed  Google Scholar 

  • Vogelweith F, Moret Y, Monceau K, Thiéry D, Moreau J (2016) The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. J Insect Physiol 88:33–39

    CAS  PubMed  Google Scholar 

  • Watanabe H, Kurihara Y, Wang YX, Shimizu T (1988) Mulberry pyralid, Glyphodes pyloalis: Habitual host of non -occluded viruses pathogenic to the silkworm, Bombyx mori. J Inverteb Pathol 52:401–408

    Google Scholar 

  • Wu G, Liu Y, Ding Y, Yunhong Y (2016) Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue Cell 48:297–304

    CAS  PubMed  Google Scholar 

  • Yamashita M, Iwabuch K (2001) Bombyx mori prohaemocyt division and differentiation in individual microcultures. J Insect Physiol 47:325–331

    CAS  PubMed  Google Scholar 

  • Zibaee I, Jalali Sendi J (2011) Identification, differential and total count on haemocytes of Hyphantria cunea (Lep.: Arctiidae) and Glyphodes pyloalis (Lep.: Crambidae), and investigation on the effect of juvenile hormone I on these cells. J Entomol Soc Iran 30: 47–67

Download references

Acknowledgements

Our sincere thanks are due to Núcleo de Plataformas Tecnológicas-CPqAM/FIOCRUZ for transmission electron microscopy.

Funding

This study was funded by Iran National Science Foundation (INSF) (Grant number 91003789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Sendi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, R., Sendi, J.J., Valizadeh, B. et al. Mulberry pyralid haemocyts, a structural and functional study. Int J Trop Insect Sci 41, 75–84 (2021). https://doi.org/10.1007/s42690-020-00177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00177-w

Keywords