Skip to main content
Log in

Influence of abiotic factors on the infestation dynamics of whitefly, Bemisia tabaci (Gennadius 1889) in cotton and its management strategies in North-Western India

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Bemisia tabaci is the most destructive insect of cotton worldwide. We analysed infestation dynamics of B. tabaci in cotton during summers of 2015–2017, and predicted the factors influencing its abundance. The incidence of B. tabaci on cotton was exceptionally high in 2015 (25.91 ± 2.14 adults/3 leaves) as compared to 2016 (9.53 ± 1.23 adults/3 leaves) and 2017 (8.54 ± 1.12 adults/3 leaves). Minimum temperature, maximum-minimum relative humidity and rainfall influencing the B. tabaci population build-up were predicted using PCRA technique with reasonable accuracy (R2 = 0.87). The results also showed that monitoring/ sampling of B. tabaci in cotton should be done before 10:00 h. Among different cotton cultivars, Ankur 3028 and Bioseed 6588 were most susceptible to B. tabaci infestation. Bemisia tabaci incidence in cotton interferes with the secondary metabolite production in different cultivars. Pesticides tested for management of B. tabaci gave a maximum population reduction ranging from 42.91 to 77.01% 7 days after spray. The efficacy of tested pesticides persisted up to 10 days after spray. Maximum control of B. tabaci was achieved by flonicamid > clothianidin > diafenthiuron > dinotefuran > thiamethoxam, whereas, ethion was found least effective. Pyriproxyfen have nymphicidal action and provided maximum reduction (68.62%) in whitefly population after 10 days of spray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas MA (2001) General Agriculture. Emporium publication (2nd edition), Pakistan. Pp. 352

  • Abro GH, Syed TS, Tunio GM, Khuhro MA (2004) Performance of transgenic Bt cotton against insect pest infestation. Biotechnology 3:75–81

    Google Scholar 

  • Akkopru EP, Atlihan R, Okut H, Chi H (2015) Demographic assessment of plant cultivar resistance to insect pest: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J Econ Entomol 108:1–10

    Google Scholar 

  • Allen CD, Breshears DD (1998) Drought induced shift of a Forest woodland Ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci U S A 95(25):14839–14842

    CAS  Google Scholar 

  • Aneni TI, Aisagbonhi CI, Iloba BN, Adaigbe VC (2014) Life cycle of Petiobus setigerus (Kerrich) (Hymenoptera: Eulophidae): a parasitoid of the oil palm Pest, Coelaenomenodera elaeidis (Coleoptera: Chrysomelidae). J Acad Ind Res 2:492–494

    Google Scholar 

  • Anonymous (2015) Package of practices of Kharif crops. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Anonymous (2017a) Cotton Industry in India. https://www.ibef.org/exports/cotton-industry-india.aspx

  • Anonymous (2017b). National cotton scenario. The cotton Corporation of India limited. https://cotcorp.org.in/shares.aspx

  • Anonymous (2017c) Area, Average Yield, Production under Cotton in Punjab. http://punenvis.nic.in/index3.aspx?sslid=5863&subsublinkid=%204974&langid=1&mid=1. Accessed during March, 2019

  • Aslam M, Khan AH, Rasheed T, Khan IA (2001) Monitoring whitefly, Bemisia tabaci (Genn.) on cotton. Pak J Zool 33:261–264

    Google Scholar 

  • Aslam M, Razaq M, Shah SA, Ahmad F (2004) Comparative efficacy of different insecticides against sucking pests of cotton. J Res Sci 15:53–58

    Google Scholar 

  • Attique MR, Rafiq M, Ghaffar A, Ahmad Z, Mohyuddin AI (2003) Hosts of Bemisia tabaci (gen.) (Homoptera; Aleyrodidae) in cotton areas of Punjab, Pakistan. Crop Prot 22:715–720

    Google Scholar 

  • Atwal AS, Dhaliwal GS (2007) Agricultural pests of South Asia and their management. Kalayani Publishers, New Delhi, p 505

    Google Scholar 

  • Avidov Z (1956) Bionomics of the tabacco whitefly (Bemisia tabaci Gennad.) in Israel. Ktavi 7:25–41

    Google Scholar 

  • Babu SR, Meghwal ML (2014) Population dynamics and monitoring of sucking pests and bollworms on bt cotton in humid zone of southern Rajasthan. Bioscan 9:629–632

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Google Scholar 

  • Bayhan E, Bayhan SO, Ulusoy MR, Brown JK (2005) Effect of temperature on the biology of Aphis punicae (Passerini) (Homoptera: Aphididae) on pomegranate. Environ Entomol 34:22–26

    Google Scholar 

  • Bruckova K, Sytar O, Zivkak M, Barestic M, Lebeda A (2016) The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce. J Cent Eur Agric 17:986–997

    Google Scholar 

  • Butler Jr GD, Hennebeery TJ Hutchinson WD (1986) Biology, sampling and population dynamics of Bemisia tabaci. In: Russell GE (ed.), Agricultural Zoology Reviews, Vol. 1, Intercept, pp: 167–195

  • Chandler SF, Dodds JH (1983) The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep 2:105–108

    Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New York, p 703

    Google Scholar 

  • Dhillon BS, Sidhu RS (2016) Successful management of whitefly incidence in cotton through joint efforts of farm experts and farmers. Progress Farm 52:5–7

    Google Scholar 

  • Douglas AE (2003) Nutritional physiology of aphids. Adv Insect Physiol 31:73–140

    CAS  Google Scholar 

  • Dubois M, Giller K, Hamilton JK, Robers PA, Smith F (1951) Colorimetric method for determination of sugar. Nature 186:167

    Google Scholar 

  • DuPont MS, Mondin Z, Williamson G, Price KR (2000) Effect of cultivar, processing and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48(9):3957–3964

    CAS  Google Scholar 

  • Dussi MC, Sugar D, Wrolstad RE (1995) Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit colour. J Am Soc Hortic Sci 120:785–789

    CAS  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns L (2000b) Climate extremes: observations, modeling and impacts. Science 5487:2068–2074

    Google Scholar 

  • Ellango R, Singh ST, Rana VS, Priya NG, Raina H, Chaubey R, Naveen NC, Mahmood R, Ramamurthy VV, Asokan R (2015) Distribution of Bemisia tabaci genetic groups in India. Environ Entomol 44:1258–1264

    CAS  Google Scholar 

  • Geiger R (1954) "Klassifikation der Klimatenach W. Köppen" (Classification of climates after W. Köppen). Landolt-Börnstein – Zahlenwerte und FunktionenausPhysik, Chemie, Astronomie, Geophysik und Technik, alteSerie. Berlin: Springer. 3. pp. 603–607

  • Gerling D (1984) The overwintering mode of Bemisia tabaci and its natural enemies in Israel. Phytoparasitica 12:109–118

    Google Scholar 

  • Gerling D (1996) Status of Bemisia tabaci in the Mediterranean countries: opportunities for biological control. Biol Control 6:11–22

    Google Scholar 

  • Godhani PH, Patel RM, Jani JJ, Yadav DN, Kora TDM, Patel BH (2009) Impact of habitat manipulation on insect pests and their natural enemies in hybrid cotton. Karnataka J Agric Sci 22:104–107

    Google Scholar 

  • Hanumantharaya L, Goud KB, Naik LK (2008) Use of green lacewing, Chrysoperla carnea (Stephens) and Neem seed kernel extract for management of insect pests on cotton. Karnataka J Agric Sci 21:41–44

    Google Scholar 

  • Henderson CF, Tilton EW (1955) Test with acaricides against the brown wheat mite. J Econ Entomol 48:157–161

    CAS  Google Scholar 

  • Horowitz AR (1986) Population dynamics of Bemisia tabaci (Gennadius): with special emphasis on cotton fields. Agric Ecosyst Environ 17:37–47

    Google Scholar 

  • Horowitz AR, Podoler H, Gerling D (1984) Life table analysis of the tobaco whitefly Bemisia tabaci (Gennadius) in cotton fields in Israel. Acta Oecol Appl 5:221–233

    Google Scholar 

  • Hussain MA, Trehan KN (1933) Observations on the life-history, bionomics and control of the whitefly of cotton (Bemisia gossypiperda M. & L.). Indian J Agric Sci 3:701–753

    Google Scholar 

  • Hussain MA, Trehan KN, Verma PM (1936) Studies on Bemisia gossypiperda M. and L. no. 3 seasonal activities of Bemisia gossypiperda M. and L. (the whitefly of cotton) in the Punjab. Indian J Agric Sci 6:893–903

    Google Scholar 

  • Janghel M, Rajput MS (2016) Efficacy of bio- pesticides against whitefly Bemesia tabaci on okra. Plant Arch 16:102–104

    Google Scholar 

  • Janu A, Dahiya KK (2017) Influence of weather parameters on population of whitefly, Bemisia tabaci in American cotton (Gossypium hirsutum). J Entomol Zool Stud 5:649–654

    Google Scholar 

  • Johnson MW, Toscano NC, Reynolds HT, Sylvester ES, Kido K, Natwick ET (1982) Whiteflies cause problems of southern California growers. Calif Agric 36:24–26

    Google Scholar 

  • Jones D (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Google Scholar 

  • Jose L, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA satellite with a begomovirus. Virology 305:310–317

    CAS  Google Scholar 

  • Kadam DB, Kadam DR, Umate SM, Lekurwale RS (2014) Bioefficacy of newer neonicotenoids against sucking insect pests of bt cotton. Int J Plant Protect 2:415–419

    Google Scholar 

  • Kalaris T, Daniel F, Roger M, Manuel CG, Amy R, Darryl H, Naomi C, Nichole H, Tony MPA, Peter W, (2014) The role of surveillance methods and Technologies in Plant Biosecurity. Other Publications in Zoonotics and Wildlife Disease 172: 308–337

  • Kataria SK, Singh P, Bhawana KJ (2017) Population dynamics of whitefly, Bemisia tabaci Gennadius and leaf hopper, Amrasca biguttula biguttula Ishida in cotton and their relationship with climatic factors. J Entomol Zool Stud 5:976–983

    Google Scholar 

  • Kaur P, Singh H, Butter NS (2009) Formulation of weather based criteria rules for the prediction of sucking pests in cotton (Gossypium hirsutum) in Punjab. Indian J Agric Sci 79:375–380

    Google Scholar 

  • Kaur R, Sharma R, Sharan L (2015) Bio-efficacy of synthetic insecticides against white fly (Bemisia tabaci) infesting Bt cotton. Res J Recent Sci 4:1–2

    Google Scholar 

  • Kharel S, Singh PS, Singh SK (2016) Efficacy of newer insecticides against sucking insect pests of green gram [Vigna radiata (l.) wilczek]. Int J of Agric, Environ Biotechnol 9:1081–1087

    Google Scholar 

  • Liu ZD, Li DM, Gong PY, Wu KJ (2004) Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environ Entomol 33:1570–1576

    Google Scholar 

  • Lornez K, Collins F (1989) Starch characteristics of aphid (Metopolophium dirhodum) infested barley. Starch 41:211–214

    Google Scholar 

  • Malhotra SS, Sarkar SK (1979) Effects of Sulphur dioxide on sugar and free amino acid content of pine seedling. Physiol Plant 47:223–228

    CAS  Google Scholar 

  • Melamed-Madjar V, Cohen S, Chen M, Tam S, Rosilio D (1979) Observations on populations of Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on cotton adjacent to sunflower and potato on Israel. Isr J Entomol 13:71–78

    Google Scholar 

  • Muhammad A, Muhammad HB, Muhammad A, Muhammad AK (2009) Efficacy of some insecticides against whitefly (Bemisia tabaci Genn.) infesting cotton under field conditions. Pak J Life Sci 7:140–143

    Google Scholar 

  • Naranjo SE, Flint HM (1995) Spatial distribution of adult Bemisia tabaci (Homoptera: Aleyrodidae) in cotton and development and validation of fixed-precision sampling plans for estimating population density. Environ Entomol 24:261–270

    Google Scholar 

  • Naveen NC, Chaubey R, Kumar D, Rebijith KB, Rajagopal R, Subrahmanyam B, Subramanian S (2017) Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci Rep 7:40634. https://doi.org/10.1038/srep40634

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogy’s method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nelson MR, Nadeem A, Ahmad W, Orum TV (1998) Global assessment of cotton viral diseases. In: Proceedings of Beltwide Cotton Conference, San Diego, C.A. January 5–9, 1998. National Cotton Council of America, Memphis, TN pp 161-162

  • Nicolle C, Carnat A, Fraisse D, Lamaison JL, Rock E, Michel H, Amouroux P, Remesy CH (2004) Characterisation and variation of antioxidant micronutrients in lettuce (Lactucasativa folium). J Sci Food Agric 84:2061–2069

    CAS  Google Scholar 

  • Ohnesorge B, Rapp G (1986) Monitoring Bemisia tabaci: a review. Agric Ecosyst Environ 17:21–27

    Google Scholar 

  • Ojimelukwe PC, Onweluzo JC, Okechukwu E (1999) Effects of infestation on nutrient content and physiocochemical properties of two cowpea (Vigna unguiculata) varieties. Plant Foods Hum Nat 53:321–332

    CAS  Google Scholar 

  • Pathania M, Arora PK, Pathania S, Kumar A (2019) Studies onpopulationdynamics and management of pomegranate aphid, Aphis punicaePasserini (Hemiptera: Aphididae) on pomegranateunder semi-arid conditions of South-western Punjab. Sci Hortic 43(3):300–306

    Google Scholar 

  • Prasad NVVSD, Rao NHP, Mahalakshmi MS (2008) Population dynamics of major sucking pests infesting cotton and their relation to weather parameters. J Cotton Res Dev 22:85–90

    Google Scholar 

  • Purohit D, Ameta OP, Savangdevot SS (2006) Seasonal incidence of major insect pests of cotton and their natural enemies. Pestology 30:24–29

    Google Scholar 

  • Rajasekhar N, Durga Prasad NVVS, Sai Ram Kumar DV, Adinarayana M (2018) Incidence and management of cotton whitefly, Bemisia tabaci under high density planting system (HDPS). Int J Curr Microbiol App Sci 7:2074–2079

    Google Scholar 

  • Reddy AS, Rao VN (1989) Cotton whitefly Bemisia tabaci (Genn.) – a review. Indian J Plant Prot 17:171–179

    Google Scholar 

  • Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79:337–342

    CAS  Google Scholar 

  • Selvaraj S, Adiroubane D, Ramesh V (2010) Population dynamics of important insect pests of bhindi in relation to weather parameters. Pestology 34:35–39

    Google Scholar 

  • Sharma M, Budha PB, Pradhan SB (2015) Efficacy test of bio-pesticides against tobacco whitefly Bemisia tabaci (Gennadius 1889) on tomato plants in Nepal. J Instr Sci Technol 20:11–17

    Google Scholar 

  • Shitole TD, Patel IS (2009) Seasonal abundance of sucking pests and their correlation with weather parameters in cotton crop. Pestology 33:38–40

    Google Scholar 

  • Singh J, Butter NS (1985) Influence of climatic factors on the buildup of whitefly Bemisia tabaci (Genn.) on cotton. Indian J Entomol 47:359–360

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidant by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Solangi GS, Mahar GM, Oad FC (2008) Presence and absence of different insect predators against sucking insect pest of cotton. J Entomol 5:31–37

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, p 439

    Google Scholar 

  • Tariq K, Ali R, Butt ZA, Ali A, Naz G, Anwar Z, Ali A, Khursheed I, Gulzar A, Saeed S, Shah JA (2016) Comparative efficacy of different insecticides alone and along with adjuvant against cotton whitefly Bemisia tabaci in Multan, Pakistan. Am-Eurasian J Agric Environ Sci 16:1424–1430

    CAS  Google Scholar 

  • Tomar SPS (2010) Impact of weather parameters on aphid population in cotton. Indian J Agric Res 442:125–130

    Google Scholar 

  • Tomas BFA, Ferreres F, Gil MI (2000) Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud Nat Prod Chem 23:739–795

    Google Scholar 

  • Tonhasca JRA, Palumbo JC, Byrne DN (1994) Distribution patterns of Bemisia tabaci (Homoptera: Aleyrodidae) in cantaloupe fields in Arizona. Environ Entomol 23:949–954

    Google Scholar 

  • Tsai JH, Wang JJ (2001) Effects of host plants on biology and life table parameters of Aphid spiraecola (Homoptera: Aphididae). Environ Entomol 30:45–50

    Google Scholar 

  • Umar MS, Jala AM, Murtaza MF, Gogi MD, Salman M (2003) Effect of abiotic factors on the population fluctuations of whitefly Bemisia tabaci (Genn.) in nectaried and nectariless genotypes of cotton. Int J Agric Biol 5:362–363

    Google Scholar 

  • Waage SK, Hedin PA (1984) Biologically-active flavonoids from Gossypium arboreum. Phytochemistry 23:2509–2511

    CAS  Google Scholar 

  • Wei SY, Xiao LB, Tan YA, Zhao HX, Bai LX (2010) Changes of physiological indices of host plants infested by Lygus lucorum Meyer-Dür (Hemiptera: Miridae). Acta Phytophylacica Sinica 37:359–364

    CAS  Google Scholar 

  • Zamora JEG, Leira D, Bellido MJ, Avilla C (2004) Evaluation of the effect of different insecticides on the survival and capacity of Eretmocerus mundus Mercet to control Bemisia tabaci (Gennadius) populations. Crop Prot 23:611–618

    Google Scholar 

  • Zhou HZ, Wang XC, Yu Y, Tan XM, Cheng ZQ, Zhang AS, Men XY, Li LL (2013) Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars, measured in autumn wood. J Econ Entomol 106:1011–1017

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to reviewers and editor for their critical review and constructive inputs for the improvement of this manuscript. Thanks are due to Director PAU, Regional Research Station, Abohar, for providing necessary facilities to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

MP and PKA conceived and designed the research. MP, MS and AV conducted the experiments. NK conducted the biochemical analysis of the cotton leaf tissues. MP and AV analysed data. MP wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Mandeep Pathania.

Ethics declarations

Disclosure statement

The authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Abiotic factors played significant role in predicting the dynamics of whitefly (Bemisia tabaci) to much extent.

• Monitoring of B. tabaci in cotton fields should be done before 10: 00 hours.

• Differences in crop conditions affect the biosynthesis of phenolic compounds and B. tabaci incidence in cotton cultivars.

• Flonicamid, clothianidin, diafenthiuron, dinotefuran and pyriproxyfen are effective in controlling B. tabaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, M., Verma, A., Singh, M. et al. Influence of abiotic factors on the infestation dynamics of whitefly, Bemisia tabaci (Gennadius 1889) in cotton and its management strategies in North-Western India. Int J Trop Insect Sci 40, 969–981 (2020). https://doi.org/10.1007/s42690-020-00155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00155-2

Keywords

Navigation