Skip to main content

Advertisement

Log in

Insect diversity associated with quinoa (Chenopodium quinoa Willd.) in three altitudinal production zones of Peru

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Quinoa is an Andean grain that is increasingly gaining international attention. In recent years, the crop has also emerged in Peruvian regions at lower altitudes (including the Coast). This study investigated the insect diversity associated with quinoa by collecting insects with pitfall traps throughout the crop phenology in three altitudinal zones of Peru: San Lorenzo, in the traditional production region, Junín; and Majes and La Molina in the non-traditional regions Arequipa and Lima, respectively. Our data revealed that the alpha diversity (in terms of species evenness and species richness) was highest in the Andean zone, San Lorenzo, and lowest in Majes. As to the functional groups (herbivores and natural enemies), no differences between field sites in species evenness were found but San Lorenzo was significantly superior to the other zones in species richness of both functional guilds. The analysis of beta diversity revealed large differences among field sites in terms of entomofauna composition, with few species in common; the key pest of quinoa in South America, Eurysacca melanocampta, was found at the three localities. The results of this study can contribute to a more sustainable pest management system taking into account insect-mediated ecosystem services like biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alata-Cóndor J (1973) Lista de insectos y otros animales dañinos a la agricultura en el Perú. Estación Experimental Agrícola La Molina, Dirección General de Investigación Agraria, Lima

    Google Scholar 

  • Albújar E (2017) Anuario Estadístico de la Producción Agrícola 2017. Lima, Perú: Sistema Integrado de Estadísticas Agrarias del Ministerio de agricultura y riego del Perú. Available online: http://siea.minagri.gob.pe/siea/?q=publicaciones/anuario-de-produccion-pecuaria. Accessed 15 February 2019

  • Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31. https://doi.org/10.1016/B978-0-444-50019-9.50005-4

    Article  Google Scholar 

  • Arnett R, Thomas M (2000) American beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. CRC Press. https://doi.org/10.1201/9781482274325

  • Arnett R, Thomas M, Skelley P, Frank J (2002) American beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press.https://doi.org/10.1201/9781420041231

  • Bazile D, Bertero H, Nieto C (2014). Estado del arte de la quinua en el mundo en 2013. FAO (Santiago de Chile) y CIRAD, (Montpellier, Francia)

  • Bennett A (2010) The role of soil community biodiversity in insect biodiversity. Insect Conserv Diver 3:157–171. https://doi.org/10.1111/j.1752-4598.2010.00086.x

    Article  Google Scholar 

  • Biondi M, D’Alessandro P (2012) Afrotropical flea beetle genera: a key to their identification, updated catalogue and biogeographical analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Zookeys 253:1–158. https://doi.org/10.3897/zookeys.253.3414

    Article  Google Scholar 

  • Blackman R, Eastop V (2000) Aphids on the world’s crops: An identification and information guide (2nd edn). Vol 1,2. John Wiley & Sons Ltd.

  • Blackman R, Eastop V (2006) Aphids on the world’s herbaceous plants and shrubs. John Wiley & Sons

  • Bouček Z, Rasplus J (1991) Illustrated key to West-Palearctic genera of Pteromalidae (Hymenoptera: Chalcidoidea). Institut National de la Recherche Agronomique (INRA)

  • Bousquet Y (2010) Illustrated identification guide to adults and larvae of northeastern north American ground beetles (Coleoptera, Carabidae). Pensoft, Sofia-Moscow

    Google Scholar 

  • Brown B, Borkent A, Cumming J, Wood D, Zumbado M (2009) Manual of central American Diptera, vol 1. NRC Research Press, Otawa

    Google Scholar 

  • Brown B, Borkent A, Cumming J, Wood D, Woodley N, Zumbado M (2010) Manual of central American Diptera: volume 2. NRC Research Press

  • Burckhardt D (1987a) Jumping plant lice (Homoptera: Psylloidea) of the temperate neotropical region. Part 1: Psyllidae (subfamilies Aphalarinae, Rhinocolinae and Aphalaroidinae). Zool J Linnean Soc 89(4):299–392

    Article  Google Scholar 

  • Burckhardt D (1987b) Jumping plant lice (Homoptera: Psylloidea) of the temperate neotropical region. Part 2: Psyllidae (subfamilies Diaphorininae, Acizziinae, Ciriacreminae and Psyllinae). Zool J Linnean Soc 90(2):145–205

    Article  Google Scholar 

  • Burckhardt D (1988) Jumping plant lice (Homoptera: Psylloidea) of the temperate neotropical region. Part 3: Calophyidae and Triozidae. Zool J Linnean Soc 92(2):115–191

    Article  Google Scholar 

  • Burckhardt D (1994) Generic key to Chilean jumping plant-lice (Homoptera: Psylloidea) with inclusion of potential exotic pests. Rev Chilena Entomol 21:57–67

    Google Scholar 

  • Camino A, Johns T (1988) Laki-Laki (Dennstaedtia glauca, Polypodiaceae): a green manure used in traditional Andean agriculture. Econ Bot 42:45–53. https://doi.org/10.1007/BF02859030

    Article  Google Scholar 

  • Camino A, Recharte J, Bidegaray P (1985) Calendar flexibility in traditional agriculture of the eastern slopes of the Andes. In: Lechtman H, Soldi A (eds) La Tecnología en el Mundo Andino. UNAM Press, Mexico

    Google Scholar 

  • Cisneros F (2012). Control químico de las plagas agrícolas. Sociedad Entomológica del Perú, Lima

  • Chazdon R, Colwell R, Denslow J, Guariguata M (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. In Forest biodiversity research, monitoring and modeling: conceptual background and old world case studies, 20, 285–309. Man and the Biosphere Series, United States of America

  • Colwell R (2013) EstimateS. Version 9.1.0. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, USA CT, 06869-3043

  • Corder G, Foreman D (2009) Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach (Vols. 1–1). John Wiley & Sons, New Jersey

  • Cornelis M, Quiran E, Coscaron M (2012) The scentless plant bug, Liorhyssus hyalinus (Fabricius) (Hemiptera: Heteroptera: Rhopalidae): description of immature stages and notes on its life history. Zootaxa 3525(1):83–88

    Article  Google Scholar 

  • Crowder D, Jabbour R (2014) Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol Control 75:8–17. https://doi.org/10.1016/j.biocontrol.2013.10.010

    Article  Google Scholar 

  • Cruces L, Callohuari Y, Carrera C (2016) Quinua: Manejo integrado de plagas. Estrategias en el cultivo de quinua para fortalecer el sistema agroalimentario en la zona andina. Organización de las naciones unidas para la alimentación y la agricultura (FAO), Santiago, Chile

  • De Mendiburu F (2017) Agricolae: statistical procedures for agricultural research. R package version, 1.2(8)

  • Derocles S, Le Ralec A, Plantegenest M, Chaubet B, Cruaud C, Cruaud A, Rasplus J (2012) Identification of molecular markers for DNAbarcoding in the Aphidiinae (Hym. Braconidae). Mol Ecol Resour 12(2):197–208. https://doi.org/10.1111/j.1755-0998.2011.03083.x

    Article  CAS  PubMed  Google Scholar 

  • Ding T, Chi H, Gökçe A, Gao Y, Zhang B (2018) Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Sci Rep 8(1):3346. https://doi.org/10.1038/s41598-018-21689-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dughetti A (2015). Plagas de la quinua y sus enemigos naturales en el valle inferior del río colorado, Buenos Aires, Argentina. Instituto Nacional de Tecnología Agropecuaria. Ministerio de agricultura, ganadería y pesca. Available in https://inta.gob.ar/portada-documentos/libros-guias-y-manuales

  • Epstein D, Zack R, Brunner J, Gut L, Brown J (2000) Effects of broad-spectrum insecticides on epigeal arthropod biodiversity in Pacific northwest apple orchards. Environ Entomol 29(2):340–348. https://doi.org/10.1093/ee/29.2.340

    Article  CAS  Google Scholar 

  • FAO (2011) Quinoa: an ancient crop to contribute to world food security. Food and Agriculture Organization, Regional Office for Latin America and the Caribbean

  • Fernández F, Sharkey M (2006). Introducción a los Hymenoptera de la Región Neotropical. Editora Guadalupe, Ltda, Colombia

  • García M, Condori B, Castillo C (2015) Agroecological and agronomic cultural practices of quinoa in South America. In Quinoa: Improvement and Sustainable Production, 25–46. https://doi.org/10.1002/9781118628041.ch3

  • Gill H, McSorley R (2012) Methods for sampling soil surface arthropods in bush beans: which one is the best? Proc Fla State Hort Soc 125:192–195

    Google Scholar 

  • Göllner-Scheiding U (1976) Revision der Gattung Liorhyssus Stål, 1870 (Heteroptera, Rhopalidae). Deut Entomol Z 23(1–3):181–206

    Google Scholar 

  • Gómez L, Aguilar E (2016) Guía de cultivo de la quinua. Lima, Perú: Universidad Nacional Agraria La Molina Programa de Investigación y Proyección Social de Cereales y Granos Nativos Facultad de Agronomía

  • Gotelli N, Colwell R (2011) Estimating species richness. Biol Diver Front Meas Assess 12:39–54

    Google Scholar 

  • Guerra García, H. (2006). Agricultura peruana. Segunda Edición. lima, Perú

  • Halloy S, Ortega R, Yager K, Seimon A (2005) Traditional Andean cultivation systems and implications for sustainable land use. Acta Hortic 670:31–55

    Article  Google Scholar 

  • Harbhajan K, Kaur S (2017) DNA barcoding of six species of family Rhopalidae (Insecta: Hemiptera: Heteroptera) from India. Int J Life Sci 5(4):517–526

    Google Scholar 

  • Heckman C (2017) Neuroptera (including Megaloptera). Springer, United States of America

  • Henry T, Dellapé P, de Paula A (2015). The big-eyed bugs, chinch bugs, and seed bugs (Lygaeoidea). In True bugs (Heteroptera) of the Neotropics, (p. 459–514). Springer, Dordrecht

  • Hervé M (2018). RVAideMemoire: diverse basic statistical and graphical functions. R package version 0.9–70

  • Hodkinson I, White I (1979). Homoptera: Psylloidea. R Entomol Soc Lond 2(5)

  • Horton D, Miliczky E, Lewis T, Cooper W, Waters T, Wohleb C et al (2018) New north American Records for the old World Psyllid Heterotrioza chenopodii (Reuter) (Hemiptera: Psylloidea: Triozidae) with biological observations. Proc Entomol Soc Wash 120(1):134–152. https://doi.org/10.4289/0013-8797.120.1.134

    Article  Google Scholar 

  • IRAC (2020). Pesticide resistance management [Online]. Insecticide Resistance Action Committee (IRAC). Available online: https://www.irac-online.org/about/resistance/management/. Accessed on 24 March 2020

  • Ishaaya I, Kontsedalov S, Horowitz A (2002) Emamectin, a novel insecticide for controlling field crop pests. Pest Manag Sci 58(11):1091–1095. https://doi.org/10.1002/ps.535

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen S (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1–2):167–177. https://doi.org/10.1081/FRI-120018883

    Article  Google Scholar 

  • Jacobsen S (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197(5):390–399. https://doi.org/10.1111/j.1439-037X.2011.00475.x

    Article  Google Scholar 

  • Kindt R (2018) Biodiversity R: package for community ecology and suitability analysis. R version, 2.10-1

  • Korytkowski C (2014) Contribución al conocimiento de los Agromyzidae (Diptera: Muscomorpha) en el Perú. Rev Peru Entomol 49:1–106

    Google Scholar 

  • Latorre J (2017) Is quinoa cultivation on the coastal desert of Peru sustainable? A case study from Majes, Arequipa (master thesis). Aarhus University, Denmark

  • Leather S (2005) Insect sampling in forest ecosystems. Blackwell Science Ltd, United Kingdom

  • Magurran A (2004) Measuring biological diversity. Blackwell Science Ltd, United Kingdom

  • Margalef R (1972) Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Connecticut Academy of Arts and Sciences

  • Masner L (1976) Revisionary notes and keys to world genera of Scelionidae (Hymenoptera: Proctotrupoidea). Mem Entomol Soc Can 108(S97):1–87. https://doi.org/10.4039/entm10897fv

    Article  Google Scholar 

  • McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201–212. https://doi.org/10.1016/0167-8809(95)00609-V

    Article  Google Scholar 

  • Moreno C, Halffter G (2000) Assessing the completeness of bat biodiversity inventories using species accumulation curves. J Appl Ecol 37(1):149–158. https://doi.org/10.1046/j.1365-2664.2000.00483.x

    Article  Google Scholar 

  • Moret P (1995) Contribution à la connaissance du genre néotropical Blennidus Motschulsky, 1865. Bull Soc Entomolo Fr 100(5):489–500

    Google Scholar 

  • Moret P (2003) Clave de identificación para los géneros de Carabidae (Coleoptera) presentes en los páramos del Ecuador y del sur de Colombia. Rev Colomb Entomol 29(2):185–190

    Google Scholar 

  • Mouhoubi D, Djenidi R, Bounechada M (2019) Contribution to the study of diversity, distribution, and abundance of insect Fauna in salt wetlands of Setif region, Algeria. Int J Zoolo 2019:11–11. https://doi.org/10.1155/2019/2128418

    Article  Google Scholar 

  • Mound L, Kibby G (1998) Thysanoptera: an identification guide (2nd ed.). Cab International

  • Nakamura S, Masuda T, Mochizuki A, Konishi K, Tokumaru S, Ueno K, Yamaguchi T (2013) Primer design for identifying economically important Liriomyza species (Diptera: Agromyzidae) by multiplex PCR. Mol Ecol Resour 13(1):96–102. https://doi.org/10.1111/1755-0998.12025

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academies Press

  • Navarrete-Heredia J, Newton A, Thayer M, Ashe J, Chandler D (2002) Guía ilustrada de los Staphylinidae (Coleoptera) de México. Illustrated guide to the genera of Staphylinidae (Coleóptera) of Mexico. Guadalajara, México: Universidad de Guadalajara-CONABIO

  • Navon A (2000). Bacillus thuringiensis application in agriculture. In Entomopathogenic bacteria: from laboratory to field application, 355369. Springer, Dordrecht

  • Núñez E (2016). Estudio de la diversidad fenotípica del maíz (Zea mays L.) en la sierra baja y media del Perú (Engineering thesis). Universidad Nacional Agraria La Molina, Lima, Peru, 96 p

  • OEEE (Oficina de Estudios Económicos y Estadística) (2012) Producción Agrícola 2012 (p. 264). Lima, Perú: Ministerio de agricultura y riego del Perú. (Available online: http://siea.minagri.gob.pe/siea/?q=publicaciones/anuario-de-produccion-pecuaria. Accessed 15 Feb 2019

  • Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. R package [R]

  • Oksanen J, Blanchet F, Michael F, Kindt R, Legendre P, Dan McGlinn P et al (2018) Package ‘vegan’. Community ecology package, version 2.5(3)

  • Oliver I, Beattie A (1993) A possible method for the rapid assessment of biodiversity. Conserv Biol 7(3):562–568. https://doi.org/10.1046/j.1523-1739.1993.07030562.x

    Article  Google Scholar 

  • Oliver I, Beattie A (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10(1):99–109. https://doi.org/10.1046/j.1523-1739.1996.10010099.x

    Article  Google Scholar 

  • Orellano H, Tillmann H (1984). La quinua en Yanamarca, Prov De Jauja: Testimonios Sobre la Siembra Campesina. Boletín de Lima, 6, 55–64

  • Pall J, Kihn R, Diez F (2016) A review of genus Nysius Dallas in Argentina (Hemiptera: Heteroptera: Orsillidae). Zootaxa 4132(2):221–234

    Article  PubMed  Google Scholar 

  • Panizzi A, Grazia J (2015). True bugs (Heteroptera) of the neotropics. Entomology in focus 2. Springer

  • Peacock L, Worner S (2008) Biological and ecological traits that assist establishment of alien invasive insects. N Z Plant Prot 61:1–7. https://doi.org/10.30843/nzpp.2008.61.6824

    Article  Google Scholar 

  • Povolný D (1986) Gnorimoschemini of southern South América. II the genus Eurysacca (Lepidoptera gelechiidae). Steenstrupia 12:1–47

    Google Scholar 

  • Pulgar Vidal J (1981) Geografía del Perú: Las ocho regiones naturales del Perú. Editorial Universo, Lima

    Google Scholar 

  • Quispe R, Saravia R, Villca M, Lino V (2014) Complejo Polilla. In Plagas y enfermedades del cultivo de quinua (p. 49–62). Cochabamba, Bolivia: Fundación PROINPA

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Available in http://www.R-project.org/

    Google Scholar 

  • Rasmussen C, Lagnaoui A, Esbjerg P (2003) Advances in the knowledge of quinoa pests. Food Rev Int 19(1 & 2):61–75

    Article  Google Scholar 

  • Reina P, La Salle J (2003) Key to the world genera of Eulophidae parasitoids (Hymenoptera) of leafmining Agromyzidae (Diptera). World Wide Web electronic publication. Available online: URL http://www.ento.csiro.au/science/eulophid_key/eulophids.htm

  • Ripley B, Venables B, Bates D, Hornik K, Gebhardt, Firth, Ripley M (2018) Package ‘mass’. CRAN Repos. Httpcran R-Proj. Available in https://cran.r-project.org/web/packages/MASS/MASS.pdf

  • Samways M (2005) Insect diversity conservation. Cambridge University Press

  • Sánchez G, Vergara C (2002) Plagas de los cultivos andinos (Segunda edición). Universidad Nacional Agraria La Molina. Departamento de Entomología, Lima

    Google Scholar 

  • Sánchez G (2003). Ecología de insectos. Universidad Nacional Agraria La Molina, Departamento de Entomología, Lima

  • Saravia R, Plata G, Gandarillas A (2014) Plagas y enfermedades del cultivo de quinua. Fundación PROINPA, Cochabamba

    Google Scholar 

  • Serbina L, Burckhardt D, Birkhofer K, Syfert M, Halbert S (2015) The potato pest Russelliana solanicola Tuthill (Hemiptera: Psylloidea): taxonomy and host-plant patterns. Zootaxa 4021(1):33–62

    Article  PubMed  Google Scholar 

  • Shufran K, Puterka G (2011) DNA barcoding to identify all life stages of holocyclic cereal aphids (Hemiptera: Aphididae) on wheat and other Poaceae. Ann Entomol Soc Am 104(1):39–42. https://doi.org/10.1603/AN10129

    Article  Google Scholar 

  • Siegfried B (1993) Comparative toxicity of pyrethroid insecticides to terrestrial and aquatic insects. Environ Toxicol Chem 12(9):1683–1689. https://doi.org/10.1002/etc.5620120917

    Article  CAS  Google Scholar 

  • Sifuentes E, Albújar E, Contreras S, León C, Moreyra J, Santa María J (2016) Anuario Estadístico de la Producción Agrícola y Ganadera 2016 (p. 155). Lima, Perú: Sistema Integrado de Estadísticas Agrarias del Ministerio de agricultura y riego del Perú. (Available online: http://siea.minagri.gob.pe/siea/?q=publicaciones/anuario-de-produccion-pecuaria. Accessed on 15 February 2019

  • Spencer K (1973) Agromyzidae (Diptera) of economic importance. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Straneo S (1986) Sul genere Blennidus Motschulsky 1865 (Col. Carabidae, Pterostichini). Bollettino del Museo Regionale di Scienze Naturali di Torino, 4(2): 369–393

  • Takano F, Castro N (2007) Avifauna en el Campus de la Universidad Nacional Agraria La Molina (UNALM), Lima-Perú. Ecol Apl 6(1–2):149–154

    Article  Google Scholar 

  • Triplehorn C, Johnson N (2005) Borror and delong’s introduction to the study of insects. Brooks, Cole, Belmont

    Google Scholar 

  • Tylianakis J, Tscharntke T, Lewis O (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445(7124):202–205. https://doi.org/10.1038/nature05429

    Article  CAS  PubMed  Google Scholar 

  • Valoy M, Reguilón C, Podazza G (2015) The potential of using natural enemies and chemical compounds in quinoa for biological control of insect pests. In Quinoa: Improvement and sustainable production.

  • Van Emden H, Williams G (1974) Insect stability and diversity in agro-ecosystems. Annu Rev Entomol 19(1):455–475

    Article  Google Scholar 

  • Vilca S, Espinoza E, Vidal A (2015) Multiplicación de semilla de variedades y ecotipos de quinua en valle de majes-Arequipa. Rev Investig Altoandinas 17(3):2

    Google Scholar 

  • Wallner W (1987) Factors affecting insect population dynamics: differences between outbreak and non-outbreak species. Annu Rev Entomol 32(1):317–340. https://doi.org/10.1146/annurev.en.32.010187.001533

    Article  Google Scholar 

  • Wenninger E, Inouye R (2008) Insect community response to plant diversity and productivity in a sagebrush steppe ecosystem. J Arid Environ 72(1):24–33. https://doi.org/10.1016/j.jaridenv.2007.04.005

    Article  Google Scholar 

  • Willott S (2001) Species accumulation curves and the measure of sampling effort. J Appl Ecol 38(2):484–486. https://doi.org/10.1046/j.1365-2664.2001.00589.x

    Article  Google Scholar 

  • Yábar E, Gianoli E, Echegaray E (2002) Insect pests and natural enemies in two varieties of quinua (Chenopodium quinoa) at Cusco, Peru. J Appl Entomol 126(6):275–280. https://doi.org/10.1046/j.1439-0418.2002.00664.x

    Article  Google Scholar 

  • Zhu H, Peng Y & Wang D (2008). Effects of plant on insect diversity: a review. Chin J Ecol 12

Download references

Acknowledgments

We thank Daniel Burckardt from Naturhistorisches Museum of Switzerland for confirming the identity of Russelliana solanicola and Heterotrioza chenopodii, Pablo Dellapé from Museum of La Plata in Argentina for confirming the identity of Nysius simulans and Angelico Asenjo from Federal University of Mato Grosso in Brazil for helping in identifying the staphylinids. We also thank the professors from National Agrarian University La Molina in Peru, Luz Gómez, chief of the Cereals and Native Grain programme and Clorinda Vergara, chief of the Museum of Entomology “Klaus Raven Büller”, for the facilities and permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cruces.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruces, L., de la Peña, E. & De Clercq, P. Insect diversity associated with quinoa (Chenopodium quinoa Willd.) in three altitudinal production zones of Peru. Int J Trop Insect Sci 40, 955–968 (2020). https://doi.org/10.1007/s42690-020-00154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00154-3

Keywords

Navigation