Skip to main content
Log in

Varietal-hosts attractance and repellence to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae) and role played by grains morphophysical and biochemical characteristics

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.), one of the three most important cereal crops worldwide, is stored in Sub-Saharan Africa to ensure the food resource availability throughout the year. However, maize stored often encounters losses in excess of 20% due to pests such as the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae), a major pest of stored maize in tropical countries. This study aims to assess the maize varieties attractance and repellence for P. truncatus oviposition and to explain the role of grains morphophysical and biochemical characteristics on susceptibility. Twenty-five male/female pairs of insect were equidistantly placed in environment containing nine 30 g subsamples maize grains of the different varieties. Susceptibility parameters such as parent adults occurrence, number of emerged insects, grains damage and grains weight loss had highlighted significant differences in maize attractance and repellence to P. truncatus oviposition between maize varieties evaluated. Most attractant maize variety to P. truncatus was Synth-C, recording 6.00 ± 2.65 adults emergence per 30 g grains, with 3 times higher individuals number than that of Early-Thai followed variety. This variety (Early-Thai) recorded 2 fold or greater insects progeny than Synth-9243 and DMR-ES varieties. Inversely, most repellent varieties to P. truncatus were Across-Pool, Obatampa, SWAN, Tzee-White and Tzee-Yellow. For these maize varieties, the larger grain borer did not record emergence, and therefore the maize varieties exhibited not any attacks or losses. To assess the relationship between grains morphophysical and biochemical characteristics and varietal susceptibility, phenolics, palmitic acid, hardness, clarity, color and size of grains were evaluated according to standardized methods. Spearman binary correlations showed varietal attractance to P. truncatus oviposition was positively related to grains high palmitic acid content and large grains size. Conversely, repellent maize to P. truncatus oviposition can be described as a variety with high phenolics content and high grains clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe F, Tefera T, Mugo S, Beyene Y, Vidal S (2009) Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.)(Coleoptera: Curculionidae). Afr J Biotechnol 8(21):5937–5943. https://doi.org/10.5897/AJB09.821

    Article  Google Scholar 

  • Adjile A (2012) Les acquisitions massives de terre agricoles, entre opportunités et menaces pour la paysannerie familiale : étude de cas au Sud et Centre. CEBEDES, Cotonou 149 p

    Google Scholar 

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50(21):6182–6187

    Article  CAS  Google Scholar 

  • Agbaka A, Sohounhloue KD, Dockoïmo BE, Djossou L, Foua-Bi K (1999) Contribution à la lutte intégrée contre Prostephanus truncatus (Horn) Coleoptera: Bostrichidae), par l’utilisation d’huiles essentielles. J SOACHIM 008:87–95

    Google Scholar 

  • Anonyme (2009) Directive 2009/128/CE instaurant un cadre d’actioncommunautaire pour parvenir à une utilisation des pesticides compatibles avec le développement durable. Commission Européenne, Bruxelles

    Google Scholar 

  • Arnason JT, Gale J, Conilh de Beyssac B, Sen A, Miller SS, Philogene BJR, Lambert JDH, Fulcher RG, Serratos A, Mihm J (1992) Role of phenolics in resistance of maize grain to the stored grain insects, Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.). J Stored Prod Res 28(2):119–126

    Article  CAS  Google Scholar 

  • Arnason JT, Baum B, Gale J, Lambert JDH, Bergvinson D, Philogene BJR, Serratos JA, Mihm J, Jewell DC (1994) Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74:227–236

    Article  Google Scholar 

  • Bily AC, Reid LM, Taylor JH, Johnston D, Malouin C, Burt AJ, Bakan B, Regnault-Roger C, Pauls KP, Arnason JT, Philogène BJR (2003) Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology 93(6):712–719. https://doi.org/10.1094/PHYTO.2003.93.6.712

    Article  CAS  Google Scholar 

  • Blandino M, Mancini MC, Peila A, Rolle L, Vanara F, Reyneri A (2010) Determination ofmaize kernel hardness: comparison of different laboratory tests to predict dry-milling performance. J Sci Food Agric 90(11):1870–1878. https://doi.org/10.1002/jsfa.4027

    Article  CAS  Google Scholar 

  • Bloomfield VA (2014) Using R for numerical analysis in science and engineering. Chapman & Hall/CRC The R Series 359 p

  • Borgemeister C, Adda C, Djomamou B, Degbey P, Agbaka A, Djossou F, Markham RH (1994) The effect of maize cob selection and the impact of the field infestation on stored maize losses by larger grain borer (Prostephanus truncatus [Horn] Col. , Bostrichidae) and associated storage pests. Proceedings of the 6th International Working Conference on Stored Product Protection Canberra 2: 906–909

  • Bourgou S, Beji RS, Medini F, Ksouri R (2016) Effet du solvant et de la méthode d’extraction sur la teneur en composés phénoliques et les potentialités antioxydantes d’Euphorbia helioscopia. Journal of New Sciences, Agriculture and Biotechnology 28(12):1649–1655

    Google Scholar 

  • Boxal RA (1986) A critical review of the methodology for assessing farm-level grain losses after harvest. Tropical Development and Research Institute UK, p 139

  • C.I.E. (Commission Internationale de l’Eclairage) (1976) Official recommendations on uniform colour spaces, colour differences equations and metric colour terms. Supplement N°2 to C.I.E. Publication N°15, Paris, France

  • Classen D, Arnason JT, Serratos JA, Lambert JDH, Nozzolillo C, Philogène BJR (1990) Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT’S collections. J Chem Ecol 16(2):301–315. https://doi.org/10.1007/BF01021766

    Article  CAS  Google Scholar 

  • De Groote H, De Groote B, Bruce AY, Marangu C, Tefera T (2017) Maize storage insects (Sitophilus zeamais and Prostephanus truncatus) prefer to feed on smaller maize grains and grains with color, especially green. J Stored Prod Res 71:72–80. https://doi.org/10.1016/j.jspr.2017.01.005

    Article  Google Scholar 

  • De la Parra C, Serna Saldivar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183

    Article  Google Scholar 

  • Delobel A, Tran M (1993) Les Coléoptères des denrées alimentaires entreposées dans les régions chaudes. Faune Tropicale 32:424 Retrieved from http://www.documentation.ird.fr/hor/fdi:39066

    Google Scholar 

  • Demianyk CJ, Sinha RN (1987) Effect of infestation by the larger grain borer Prostephonus truncatus (Hom) and the lesser grain borer Rhyzoperta dominica F. (Coleoptera: Bostrichidae) on stored corn. Environ Entomol 16:618–624

    Article  Google Scholar 

  • Dethier VG (1947) Chemical insect attractants and repellents. The Blakiston Company, Philadelphia 289 p. https://doi.org/10.1016/B978-0-08-097086-8.92098-1

    Book  Google Scholar 

  • Ejiro O, Ndowa Ekoate Sunday L, Usman Z, Emem Basil K-U (2018) Effects of larger grain borer Prostephanus truncatus (Coleoptera: Bostrichidae) on nutrient content of dried staple roots and tubers. Journal of Crop Protection 7(3):337–348

    Google Scholar 

  • Evans DE (1987) The survival of immature grain beetles at low temperatures. J Stored Prod Res 23(2):79–83. https://doi.org/10.1016/0022-474X(87)90020-8

    Article  Google Scholar 

  • Eyherabide GH, Robutti JL, Borras FS (1996) Effect of near-infrared transmission-based selection on maize hardness and the composition of zeins. Cereal Chem 73(6):775–778

    CAS  Google Scholar 

  • Fixon-Owoo S, Levasseur F, Williams K, Sabado TN, Lowe M, Klose M, Joffre Mercier A, Fields P, Atkinson J (2003) Preparation and biological assessment of hydroxycinnamic acid amides of polyamines. Phytochemistry 63(3):315–334. https://doi.org/10.1016/S0031-9422(03)00133-X

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Biochem 226(1):497–509

    CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO) (2012a) Catalogue officiel des variétés de Maïs. Dakar (Sénégal) 68–76. Retrieved from http://www.fao.org/pgrfa-gpa-archive/sen/docs/senegal_varietes/varietes_sen/cereales1.4.pdf

  • Food and Agricultural Organization of the United Nations (FAO) (2012b) Pertes et gaspillages alimentaires dans le monde – ampleur, causes et prévention. Rome

  • Fourar-Belaifa R, Fleurat-Lessard F (2015) Susceptibility of some cereal species and cultivars grown in Algeria to post-harvest damage by the rice weevil. Cahiers Agricultures 24(5):283–291. https://doi.org/10.1684/agr.2015.0767

    Article  Google Scholar 

  • Freeman P (1980) Common insect pests of stored food products. A Guide to Their Identification. British Muscum (Natural History), Economie Series, N° 15 (6th Ed.), London, 69 p

  • Gallo J (2007) Crop losses to pests. In: Pimentel D (ed) Encyclopedia of pest management. CRCPress, pp 60–62

  • García-Lara S, Bergvinson DJ (2014) Phytochemical and nutraceutical changes during recurrent selection for storage pest resistance in tropical maize. Crop Sci 54(6):2423–2432. https://doi.org/10.2135/cropsci2014.03.0223

    Article  Google Scholar 

  • García-Lara S, Bergvinson DJ, Burt AJ, Ramputh AI, Díaz-Pontones DM, Arnason JT (2004) The role of pericarp cell wall components in maize weevil resistance. Crop Sci 44(5):1546–1552

    Article  Google Scholar 

  • Goergen G (2005) Petit manuel d’identification des principaux ravageurs des denrées stockées en Afrique de l’Ouest. INRAB - IITA / Benin, 22 p

  • Guèye MT, Badiane M, Ndiaye AB, Mbaye I, Diouf M, Ndiaye S (2008) La protection des stocks de maïs au Sénégal: enquêtes sur les pratiques d’utilisation des pesticides et plantes à effet insecticide en milieu paysan. ITA Echos 3: 12 p. Retrieved from http://www.ansd.sn/ressources/publications/RGPHAE 2013 Chapitre Agriculture.pdf

  • Gueye MT, Goergen G, Badiane D, Hell K, Lamboni L (2008) First report on occurrence of the larger grain borer Prostephanus truncatus ( Horn ) ( Coleoptera : Bostrichidae ) in Senegal. Afr Entomol 2000(2):309–311. https://doi.org/10.4001/1021-3589-16.2.309

    Article  Google Scholar 

  • Guiné RPF, Barroca MJ (2014) Quantification of browning kinetics and colour change for quince (Cydonia oblonga mill.) exposed to atmospheric conditions. Agric Eng Int CIGR J 16(4):285–298

    Google Scholar 

  • Helbig J (1995) Écologie de Prostephanus truncatus au Togo examinée notamment du point de vue des interactions avec le prédateur Teretriosoma nigriscens. GTZ, Eschborn, 111 p

  • https://www.fao.org/publications

  • Kevin JM (2002) Maize kernel components and their roles in maize weevil resistance. International Center for the Improvement of Wheat and Maize (CIMMYT), Mexico City. Available at: https://www.Worldfoodprize.Org/Documents/Filelibrary/. Accessed 28 Aug 2019, 17

  • Lamboni Y, Hell K (2009) Propagation of mycotoxigenic fungi in maize stores by post-harvest insects. Int J Trop Insect Sci 29(1):31–39. https://doi.org/10.1017/S1742758409391511

    Article  Google Scholar 

  • López-Castillo LM, Silva-Fernández SE, Winkler R, Bergvinson DJ, Arnason JT, García-Lara S (2018) Postharvest insect resistance in maize. J Stored Prod Res 77:66–76. https://doi.org/10.1016/j.jspr.2018.03.004

    Article  Google Scholar 

  • Meikle WG, Adda C, Azoma K, Borgemeister C, Degbey P, Djomamou B, Markham RH (1998) The effects of maize variety on the density of Prostephanus truncatus (Coleoptera: Bostrichidae) and Sitophilus zeamais (Coleoptera: Curculionidae) in post-harvest store in Benin Republic. J Stored Prod Res 34(1):45–58. https://doi.org/10.1016/S0022-474X(97)00020-9

    Article  Google Scholar 

  • Mwololo JK, Mugo SN, Tefera T, Okori P, Munyiri SW, Semagn K, Otim M, Beyene Y (2012) Resistance of tropical maize genotypes to the larger grain borer. J Pest Sci 85(2):267–275. https://doi.org/10.1007/s10340-012-0427-0

    Article  Google Scholar 

  • Ngamo LST, Hance T (2007) Diversité des ravageurs des denrées et méthodes alternatives de lutte en milieu tropical. Tropicultura 25(9):215–220

    Google Scholar 

  • Ngom D, Fauconnier M-L, Malumba P, Dia CAKM, Thiaw C, Sembène M (2019) Varietal susceptibility of maize to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera : Bostrichidae), based on grain physicochemical parameters. Submitted in PLOS ONE

  • Pantenius CU (1988) Storage losses in traditional maize granaries in Togo. Int J Trop Insect Sci 9(06):725–735. https://doi.org/10.1017/s1742758400005610

    Article  Google Scholar 

  • Philogène BJR, Arnason JT (1995) La résistance du maïs aux insectes phytophages : une question de molécules. Université d’Ottawa. Cahiers Agricultures 4:85–90

    Google Scholar 

  • Philogène BJR, Arnasson JT, Lambert JDH (1989) In: Aupelf-Uref (ed) Facteurs contribuant à la protection du maïs contre les attaques de Sitophilus et Prostephanus. Céréales En Régions Chaudes. John Libbey Eurotext, Paris, pp 141–150

    Google Scholar 

  • Pingali PL, Pandey S (2001) Meeting world maize needs: technological opportunities and priorities for the public sector. In: Pingali PL (ed) CIMMYT 1999–2000. World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, 67p

    Google Scholar 

  • Pomeranz Y, Hall GE, Czuchjowska Z, Lai F (1986) Test weight, hardness, and breakage susceptibility of yellow dent corn hybrids. Cereal Chem 63:349–351

    Google Scholar 

  • Robutti JL, Borras FS, Eyherabide GH (1997) Zein composition of mechanically separated coarse and fine ponions of maize kernels. Cereal Chem 74:75–78

    Article  CAS  Google Scholar 

  • Roy N, Barik A (2014) Long-chain free fatty acids from sunflower (Asteraceae) leaves: allelochemicals for host location by the arctiid moth, Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). J Kansas Entomol Soc 87(1):22–36

    Article  Google Scholar 

  • Santiago R, Malvar RA (2010) Role of dehydrodiferulates in maize resistance to pests and diseases. Int J Mol Sci 11(2):691–703. https://doi.org/10.3390/ijms11020691

    Article  CAS  PubMed Central  Google Scholar 

  • Schneider D (1964) Insects antennae. Annu Rev Entomol 9:103–122

    Article  Google Scholar 

  • Sen A, Bergvinson D, Miller SS, Atkinson J, Fulcher RG, Amason JT (1994) Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J Agric Food Chem 42:1879–1883

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3(3):307–327. https://doi.org/10.1007/s12571-011-0140-5

    Article  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158. https://doi.org/10.12691/ijebb-2-1-5

    Article  CAS  Google Scholar 

  • Subramanyam BH, Hagstrum DW (1995) Resistance measurement and management. In: Subramanyam BH, Hagstrum DW (eds) Integrated management of insects in stored products. Marcel Dekker Inc, New York, pp 331–397

    Google Scholar 

  • Tefera T, Kanampiu F, De Groote H, Hellin J, Mugo S, Kimenju S et al (2011) The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot 30(3):240–245. https://doi.org/10.1016/j.cropro.2010.11.015

    Article  Google Scholar 

  • Verstraeten C, Haubruge E (1987) Les processus de migration de Prostephanus truncatus Horn (Coleoptera : Bostrichidae) dans un stock de maïs égrené. Med Fac Landbouww Rijksuniv Gent 52(2a):235–239

    Google Scholar 

  • Yadu YK, Saxena RC, Dubey VK (2000) Relative susceptibility of different varieties of maize to infestation by the Sitotroga cerealella (olivier) as influenced by the biochemical content of the grains. Indian Journal of Agricultural Research 34(4):243–246

    Google Scholar 

  • Youn K, Kim JY, Yeo H, Yun EY, Hwang JS, Jun M (2012) Fatty acid and volatile oil compositions of Allomyrina dichotoma larvae. Preventive Nutrition and Food Science 17(4):310–314

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Issa CISSE (COPROSA / Nioro-Senegal) and Dr. Moustapha GUEYE (CNRA-ISRA Seed Service / Senegal) for their collaboration in collection of maize samples. We gratefully acknowledge Gembloux Agro Bio-Tech Faculty of Liege University (Belgium), particularly General and Organic Chemistry laboratory staff (Mr Danny TRISMAN, Mr. Thomas BERTRAND,...) and TERRA Teaching and Research Center staff (Vanessa ARDITO, Nathalie, Romain,...) for their unfailing support on maize grains physicochemical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Déthié Ngom.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngom, D., Sembène, M. Varietal-hosts attractance and repellence to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae) and role played by grains morphophysical and biochemical characteristics. Int J Trop Insect Sci 40, 877–885 (2020). https://doi.org/10.1007/s42690-020-00145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00145-4

Keywords

Navigation