Skip to main content

Phytochemical composition of Heracleum nepalense D. Don fruit extracts and its activity against the larvae of Aedes albopictus (Diptera: Culicidae)

Abstract

Mosquito borne diseases pose a major threat to human health in India. But, these diseases lack vaccines and proper medication thereby leaving vector management as the best alternative for their control. Moreover, vector control is facing a huge challenge due to insecticide resistance development in them. Phytochemicals seem to have a future scope in ecofriendly vector management programs. Therefore, this study was done to assess the larvicidal activity of 4 different solvent extracts of the fruits of Heracleum nepalense, from the hill region of Darjeeling District of West Bengal against larvae of Aedes albopictus, Skuse. Larval mortality was observed after 24 h, 48 h and 72 h of exposure. Almost all the solvent extracts of the plant showed some amount of mortality. Among them diethyl ether extract showed 100% mortality at 200 ppm within 24 h followed by n-hexane, acetone and methanol extracts. GC-MS analysis showed the presence of different types of terpenoids such as Cadina-1(10), 4 diene (5.44%) and caryophyllene oxide (1.28%) in diethyl ether extract and 5-Caranol, (1S,3R,5S,6R)-(−)- (12.8%) and alpha copaenes (2.19%) in methanolic extract. In addition, diethyl ether extract contained furanocoumarins [(R)-9-((3,3-Dimethyl-2-oxiranyl)methoxy)-4-methoxyfuro(3,2-g)chromen-7-one (18.11%), Bergapten (4.77%), Phellopterin (2.82%)] which are specially synthesized by plants to defend themselves against herbivores. The outcome of the present study revealed that fruits of Heracleum nepalense possess great potential to be used as larvicide against Aedes albopictus larvae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adeniyi SA, Orjiekwe CL, Ehiagbonare JE, Arimah BD (2010) Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against beans weevil (Acanthscelides obtectus). Int J Phys Sci 5(6):753–762

    CAS  Google Scholar 

  • Akcin A, Seyis F, Akcin TA, Cayci YT, Coban AY (2013) Chemical composition and antimicrobial activity of the essential oil of endemic Heracleum platytaenium Boiss. From Turkey. J Essent Oil Bear Plants 16(2):166–171

    CAS  Google Scholar 

  • Amazonas Maciel Magalhães L, da Paz Lima M, Ortiz Mayo Marques M, Facanali R, Pinto ACDS, Pedro Tadei W (2010) Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules 15(8):5734–5741

    PubMed Central  Google Scholar 

  • Arnason, J.T., S.R. Sims and I.M. Scott, (2011). Natural Products from Plants as Insecticides in Agriculture and Human Health. In: Encyclopedia of Life Support Systems (EOLSS), Pezzuto, J.M. and M. Kato (Eds.). Oxford, UK.

  • Bahadori MB, Dinparast L, Zengin G (2016) The genus Heracleum: a comprehensive review on its phytochemistry, pharmacology, and ethnobotanical values as a useful herb. Compr Rev Food Sci Food Saf 15(6):1018–1039

    CAS  Google Scholar 

  • Banu KS, Cathrine L (2015) General techniques involved in phytochemical analysis. Int J Adv Res Chem Sci 2(4):25–32

    Google Scholar 

  • Beesoon S, Funkhouser E, Kotea N, Spielman A, Robich RM (2008) Chikungunya fever, Mauritius, 2006. Emerg Infect Dis 14(2):337–338

    PubMed  PubMed Central  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7(1):76–85

    PubMed  PubMed Central  Google Scholar 

  • Bharati M, Saha D (2018) Multiple insecticide resistance mechanisms in primary dengue vector, Aedes aegypti (Linn.) from dengue endemic districts of sub-Himalayan West Bengal, India. PloS One 13(9):e0203207

    PubMed  PubMed Central  Google Scholar 

  • Bose SK, Dewanjee S, Sahu R, Dey SP (2011) Effect of bergapten from Heracleum nepalense root on production of proinflammatory cytokines. Nat Prod Res 25(15):1444–1449

    CAS  PubMed  Google Scholar 

  • Calvert GM, Mehler LN, Alsop J, De Vries AL, Besbelli N (2010) Surveillance of pesticide-related illness and injury in humans. In: Hayes’ handbook of pesticide toxicology. Academic Press, Boston, pp 1313–1369

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plant 24:1250–1319

    Google Scholar 

  • Das D, Chandra G (2012) Mosquito larvicidal activity of Rauvolfia serpentina L. seeds against Culex quinquefasciatus Say. Asian Pac J Trop Med 5(1):42–45

    PubMed  Google Scholar 

  • Das NG, Goswami D, Rabha B (2007) Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vector Borne Dis 44(2):145

    CAS  PubMed  Google Scholar 

  • Davidson G, Jackson CE (1961) Insecticide resistance in mosquitoes. Nature 190(4773):364

    CAS  PubMed  Google Scholar 

  • Don-Pedro KN (1990) Insecticidal activity of fatty acid constituents of fixed vegetable oils against Callosobruchus maculatus (F.) on cowpea. Pestic Sci 30(3):295–302

    CAS  Google Scholar 

  • Drijfhout FP, Morgan ED (2010). Terrestrial natural products as antifeedants. In: Sir Comprehensive natural products chemistry, Barton D, Nakanishi K and Meth-Cohn O (eds) vol 3. Elsevier Science & Technology, India, pp 457–501.

  • Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y, Bourgaud F (2015) The distribution of coumarins and furanocoumarins in Citrus species closely matches Citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One 10(11):e0142757

    PubMed  PubMed Central  Google Scholar 

  • Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, Elm J, Tom T, Reiter P, Rigau-Perez JG, Hayes JM (2005) Dengue fever, Hawaii, 2001–2002. Emerg Infect Dis 11(5):742

    PubMed  PubMed Central  Google Scholar 

  • FAO, Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Retrieved from http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=4557 on 1 July 2019

  • Farajollahi A, Price DC (2013) A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. J Am Mosq Control Assoc 29(3):203–222

    PubMed  Google Scholar 

  • Flora of China (2019) Retrieved from http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=242325028 on 1 July 2019

  • Goldman LR, Smith DF, Neutra RR, Saunders LD, Pond EM, Stratton J, Waller K, Jackson RJ, Kizer KW (1990) Pesticide food poisoning from contaminated watermelons in California, 1985. Arch Environ Health 45(4):229–236

    CAS  PubMed  Google Scholar 

  • Goubert C, Minard G, Vieira C, Boulesteix M (2016) Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117(3):125–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan M, Rajeswary M, Benelli G (2016) δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb Chem High Throughput Screen 19(7):565–571

    CAS  PubMed  Google Scholar 

  • Hamdan H, Sofian-Azirun M, Nazni WA, Lee HL (2005) Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Trop Biomed 22(1):45–52

    PubMed  Google Scholar 

  • Houghton P, Raman A (2012) Laboratory handbook for the fractionation of natural extracts. Springer Science & Business Media, London

    Google Scholar 

  • Idrovo AJ (2014) Food poisoned with pesticide in Bihar, India: new disaster, same story. Occup Environ Med 71(3):228–228

    PubMed  Google Scholar 

  • Kamgang B, Yougang AP, Tchoupo M, Riveron JM, Wondji C (2017) Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaoundé, the capital city of Cameroon. Parasit Vectors 10(1):469

    PubMed  PubMed Central  Google Scholar 

  • Kotsakiozi P, Richardson JB, Pichler V, Favia G, Martins AJ, Urbanelli S, Armbruster PA, Caccone A (2017) Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecol Evol 7(23):10143–10157

    PubMed  PubMed Central  Google Scholar 

  • Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae albopictus. eLife 4:e08347

    PubMed  PubMed Central  Google Scholar 

  • Kuljanabhagavad T, Sriubolmas N, Ruangrungsi N (2010) Chemical composition and antimicrobial activity of the essential oil from Heracleum siamicum. J Health Res 24(2):55–60

    Google Scholar 

  • Lee D, Ahn YJ (2013) Laboratory and simulated field bioassays to evaluate larvicidal activity of Pinus densiflora hydrodistillate, its constituents and structurally related compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in relation to their inhibitory effects on acetylcholinesterase activity. Insects 4(2):217–229

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G, Su X, Wu Y, Wu K, Cai S, Yan G (2018) Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors 11(1):4

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen P, Zhou M, Wang T, Fang S, Shang X, Fu X (2018) Geographic variation in the chemical composition and antioxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) Iljinskaja leaves. Molecules 23(10):2440

    PubMed Central  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2006) Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of the filarial vector Culex quinquefasciatus (Say). Entomol Res 36(4):220–225

    Google Scholar 

  • Pages F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, Gravier P, Nkoghe D, Grandadam M (2009) Aedes albopictus mosquito: the main vector of the 2007 Chikungunya outbreak in Gabon. PLoS One 4(3):e4691

    PubMed  PubMed Central  Google Scholar 

  • Paupy C, Kassa Kassa F, Caron M, Nkoghé D, Leroy EM (2012) A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector Borne Zoonotic Dis 12(2):167–169

    PubMed  Google Scholar 

  • Ponlawat A, Scott JG, Harrington LC (2005) Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42(5):821–825

    CAS  PubMed  Google Scholar 

  • Prado JB, Mulay PR, Kasner EJ, Bojes HK, Calvert GM (2017) Acute pesticide-related illness among farmworkers: barriers to reporting to public health authorities. J Agromedicine 22(4):395–405

    PubMed  PubMed Central  Google Scholar 

  • Rahim J, Ahmad AH, Maimusa AH (2017) Effects of temephos resistance on life history traits of Aedes albopictus (Skuse)(Diptera: Culicidae), a vector of arboviruses. Revista Brasileira de Entomologia 61(4):312–317

    Google Scholar 

  • Rezza G (2012) Aedes albopictus and the reemergence of Dengue. BMC Public Health 12(1):72

    PubMed  PubMed Central  Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265

    PubMed  PubMed Central  Google Scholar 

  • Sedaghat MM, Dehkordi AS, Abai MR, Khanavi M, Mohtarami F, Abadi YS, Rafi F, Vatandoost HA (2011) Larvicidal activity of essential oils of Apiaceae plants against malaria vector, Anopheles stephensi. Iran J Arthropod Borne Dis 5(2):51–59

    PubMed  PubMed Central  Google Scholar 

  • Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P (2011) Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)(Diptera: Culicidae). Asian Pac J Trop Med 4(9):706–710

    CAS  PubMed  Google Scholar 

  • Sivan A, Shriram AN, Sugunan AP, Anwesh M, Muruganandam N, Kartik C, Vijayachari P (2016) Natural transmission of dengue virus serotype 3 by Aedes albopictus (Skuse) during an outbreak in Havelock Island: entomological characteristics. Acta Trop 156:122–129

    PubMed  Google Scholar 

  • Subramaniam J, Kovendan K, Kumar PM, Murugan K, Walton W (2012) Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi J Biol Sci 19(4):503–509

    PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H (2011) Phytochemical screening and extraction: a review. Internationale pharmaceutica sciencia 1(1):98–106

    Google Scholar 

  • Wang Z, Kim JR, Wang M, Shu S, Ahn YJ (2012) Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Manag Sci 68(7):1041–1047

    CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides (No. WHO/CDS/WHOPES/GCDPP/2005.13). World Health Organization, Geneva

  • World Health Organization (2017) Global vector control response 2017–2030. Global vector control response 2017–2030

  • Wu ML, Deng JF, Tsai WJ, Ger J, Wong SS, Li HP (2001) Food poisoning due to methamidophos-contaminated vegetables. J Toxicol Clin Toxicol 39(4):333–336

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhao Y, Guo L, Qiu Z, Huang L, Qu X (2017) Differences in chemical constituents of Artemisia annua L from different geographical regions in China. PLoS One 12(9):e0183047

    PubMed  PubMed Central  Google Scholar 

  • Zouari N, Ayadi I, Fakhfakh N, Rebai A, Zouari S (2012) Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic Species. Lipids Health Dis 11(1):28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahi, N. M. (2016). Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. International Journal of Pharmacognosy and Phytochemical Research, 8(8), 1256-1270.

Download references

Acknowledgements

The authors express their sincere thanks to the Head, Department of Zoology, University of North Bengal, for providing laboratory facilities and funds from the departmental budget allocation. Authors are thankful to the Systematics and Taxonomy laboratory, Department of Botany, University of North Bengal, West Bengal, India for the identification of the plant species. Thanks are also expressed to the University of North Bengal for providing uninterrupted LAN (Local Area Network) that has helped immensely in searching and collecting related information. Analytical Intruments Research Facility (AIRF), Jawaharlal Nehru University (JNU), New Delhi for GC-MS analysis services.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subba, A., Bharati, M., Rai, P. et al. Phytochemical composition of Heracleum nepalense D. Don fruit extracts and its activity against the larvae of Aedes albopictus (Diptera: Culicidae). Int J Trop Insect Sci 40, 373–383 (2020). https://doi.org/10.1007/s42690-019-00088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-019-00088-5

Keywords

  • Phytochemical
  • Larval bioassay
  • Vector control
  • Aedes albopictus