Skip to main content
Log in

Testing the effect of different insecticides on Myzus persicae (Homoptera: Aphididae) in field mustard (Brassicae campestris L.) Czern for possible consideration in an IPM strategy

  • Short Communication
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Efficacy of insecticides and biological control agents in an Integrated Pest Management (IPM) program requires a full understanding of both these factors and their interactions. With this in mind, a study was conducted to build an IPM strategy to control Myzus persicae (Homoptera: Aphididae) in field Mustard (Brassica compestris) crops using a combination of insecticides and biological control agents. Five different insecticides (methomyl, matrine, carbosulfan, thiamethoxam, and pymetrozine) were used to test the survival of Aphidius matricariae wasps under field and laboratory conditions. Under laboratory conditions five different concentrations (1%, 0.5%, 0.25%, 0.13% 0.06%) along with the control were made of each insecticide. Parasitoids exposed to Pymetrozine showed the highest percent emergence at 82.96%, 65.18%, 64.07%, 53.70% and 46.66% of from mummified aphids followed by thiamethoxam, carbosulfan, matrine and methomyl, whereas under field conditions none of these insecticides showed negative impacts on the emergence of A. matricariae wasps. In the presence of insecticides, no significant effect on emergence of A .matricariae wasps from mummified aphids was observed with pymetrozine showing 90.91% emergence of A. matricariae wasps, carbosulfan 81.25%, matrine 80.27%, thiamethoxam 77.29% and methomyl 75.49% emergence, respectively. In addition to observing the effect of insecticides on the emergence of A. matricariae, efficacy of these insecticides against populations of M. persicae was also studied. In order of efficacy, thiamethoxam > matrine > pymetrozine > carbosulfan > methomyl showing 91.37%, 89.61%, 72.46%, 56.6% and 54.35% reductions in aphid populations, respectively. The results of this study show that a biological control agent together with these insecticides can be used simultaneously as part of an IPM program to control M. persicae in field Mustard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abd-Ella AA (2016) Evaluation of certain neonicotinoid insecticide seed treatments against cereal aphids on some wheat cultivars. J Phytopathol Pest Manag 3:21–33

    Google Scholar 

  • Acheampong S, Stark JD (2004) Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapae. Biol Control 31:133–137

    Article  CAS  Google Scholar 

  • Aslam M, Razaq M, Maalik A (2004) Effect of nitrogen fertilizer application on population of mustard aphid (Lipaphis erysimi Kalt.) on different canola varieties. Pak Entomol 26:115–119

    Google Scholar 

  • Bennison J (1992) Biological control of aphids on cucumbers use of open rearing systems or'banker plants' to aid establishment of Aphidius matricariae and Aphidoletes aphidimyza Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit. Gent 57:457–466

    Google Scholar 

  • Chambers R, Sunderland K, Stacey D, Wyatt I (1986) Control of cereal aphids in winter wheat by natural enemies: aphid-specific predators, parasitoids and pathogenic fungi. Ann Appl Biol 108:219–231

    Article  Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. John Wiley and Sons Inc.

  • Das B (2002) Ecology and diversity of agricultural crop infesting aphids (Homoptera: Aphididae) in Bangladesh. J Aphidol 16:51–57

    Google Scholar 

  • Goh H, Yoo J (1997) Controlling cotton aphid, Aphis gossypii with the parasitoid Aphidius colemani, on banker plant in greenhouse. In: Proceedings of the 6th European congress of Entomology, Czeek Budejovice, p 754

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Henderson CF, Tilton EW (1955) Tests with acaricides against the brown wheat mite. J Econ Entomol 48:157–161

    Article  CAS  Google Scholar 

  • Herman T, Chapman R (1990) Activity of RH7988 against aphids and their natural enemies. In: Proceedings of the Forty Third New Zealand Weed and Pest Control Conference., New Zealand Weed and Pest Control Society Inc., pp 35–38

  • Irshad M (2001) Aphids and their biological control in Pakistan. Pak J Biol Sci 4:537–541

    Article  Google Scholar 

  • Jansen J-P (1996) Side effects of insecticides on Aphidius rhopalosiphi (Hym.: Aphidiidae) in laboratory. Entomophaga 41:37

    Article  CAS  Google Scholar 

  • Jansen J, Defrance T, Warnier A (2011) Side effects of flonicamide and pymetrozine on five aphid natural enemy species. BioControl 56:759–770

    Article  CAS  Google Scholar 

  • Jepson P (1989) The temporal and spatial dynamics of pesticide side-effects on non-target invertebrates. Pesticides and Non-Target Investebrates. In: Pesticides and Non-target Invertebrates, Jepson, P.C. (Ed.). Intercept, Wimborne, Dorset, England, pp: 95–128

  • Jervis MA, Moe A, Heimpel GE (2012) The evolution of parasitoid fecundity: a paradigm under scrutiny. Ecol lett 15: 357–364

    Article  Google Scholar 

  • Jones DB, Giles KL, Berberet RC, Royer TA, Elliott NC, Payton ME (2003) Functional responses of an introduced parasitoid and an indigenous parasitoid on greenbug at four temperatures. Environ Entomol 32:425–432

    Article  Google Scholar 

  • Joseph J-R, Ameline A, Couty A (2011) Effects on the aphid parasitoid Aphidius ervi of an insecticide (Plenum®, pymetrozine) specific to plant-sucking insects. Phytoparasitica 39:35–41

    Article  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Kirti P, Chopra V (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981. https://doi.org/10.1007/s00299-001-0422-z

    Article  CAS  Google Scholar 

  • Khan M, Saljoqi A, Hussain N, Sattar S (2011) Response of Myzus persicae (Sulzer) to imidacloprid and thiamethoxam on susceptible and resistant potato varieties. Sarhad J Agric 27:263–270

    Google Scholar 

  • Krespi L, Rabasse J, Dedryver C, Nenon J (1991) Effect of three insecticides on the life cycle of Aphidius uzbekistanicus luz.(Hym., Aphidiidae). J Appl Entomol 111:113–119

    Article  Google Scholar 

  • Li W, Zhang P, Zhang J, Lin W, Lu Y, Gao Y (2015) Acute and sublethal effects of neonicotinoids and pymetrozine on an important egg parasitoid, Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biocontrol Sci Tech 25:121–131. https://doi.org/10.1080/09583157.2014.957163

    Article  CAS  Google Scholar 

  • Longley M (1999) A review of pesticide effects upon immature aphid parasitoids within mummified hosts. Int J Pest Manage 45:139–145

    Article  CAS  Google Scholar 

  • Mackenzie A, Dixon AF (1991) An ecological perspective of host alternation in aphids (Homoptera: Aphidinea: Aphididae). Entomologia Generalis:265–284

    Article  Google Scholar 

  • Maienfisch P et al (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:906–913

    Article  CAS  Google Scholar 

  • Rahmani S, Bandani AR (2013) Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze)(Coleoptera: Coccinellidae). Crop Prot 54:168–175

    Article  CAS  Google Scholar 

  • Rakhshani E et al (2012) Parasitoids (Hymenoptera: Braconidae: Aphidiinae) of northeastern Iran: Aphidiine-aphid-plant associations, key and description of a new species. J Insect Sci 12. https://doi.org/10.1673/031.012.14301

    Article  Google Scholar 

  • Raymer PL (2002) Canola: an emerging oilseed crop. In: Trends in new crops and new uses. In: fifth national symposium. (Eds.) J. Janick and A. Whipkey, ASHS Press, Alxenderia, AV

  • Roistacher C, Bar-Joseph M, Gumpf D (1984) Transmission of tristeza and seedling yellows tristeza virus by small populations of Aphis gossypii. Plant Dis 68:494–496

    Article  Google Scholar 

  • Sylvester E (1989) Viruses transmitted by aphids Aphids: Their biology, natural enemies and control. Eds: A.K. Minks. and P. Harrewijn. Elsevier, Amsterdam 2:65–87

  • Torres JB, Silva-Torres CSA, Oliveira JV (2003) Toxicity of pymetrozine and thiamethoxam to Aphelinus gossypii and Delphastus pusillus. Pesq Agrop Brasileira 38:459–466

    Article  Google Scholar 

  • Uma S, Jacob S, Lyla K (2014) Acute contact toxicity of selected conventional and novel insecticides to Trichogramma japonicum Ashmead (Hymenoptera: Trichogrammatidae). Jbiopest 7:133

    CAS  Google Scholar 

  • Van Emden HF, Harrington R (2017) Aphids as crop pests. Cabi Publishing, London, 717

  • Van Schelt J, Hoogerbrugge H, Becker N, Messelink G, Blockmans K (2011) Comparing Aphidius colemani and Aphidius matricariae on Myzus persicae ssp. nicotianae in sweet pepper. IOBC/WPRS Bull 68:169–172

    Google Scholar 

  • Van Steenis M, El-Khawass K (1995) Life history of Aphis gossypii on cucumber: influence of temperature, host plant and parasitism. Entomologia Experimentalis et Applicata 76:121–131

    Article  Google Scholar 

Download references

Acknowledgments

All the authors are thankful to Dr. Simon Lawson, Associate Professor in Forest Health Forest Industries Research Centre University of the Sunshine Coast for critical reviewing and proof reading this paper.

Author information

Authors and Affiliations

Authors

Contributions

A.S designed, and M.S.K. conducted experiments. The experiment was done under the supervision of M.F.A. C.G analyzed the data. S. S. collect the data.

Corresponding author

Correspondence to Amjad Sultan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Akbar, M.F., Sultan, A. et al. Testing the effect of different insecticides on Myzus persicae (Homoptera: Aphididae) in field mustard (Brassicae campestris L.) Czern for possible consideration in an IPM strategy. Int J Trop Insect Sci 40, 225–231 (2020). https://doi.org/10.1007/s42690-019-00065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-019-00065-y

Keywords

Navigation