Skip to main content

Social Disparities in the Risk of Potentially Avoidable Hospitalization for Diabetes Mellitus: an Analysis with Linked Census and Hospital Data

Abstract

There is an increasing recognition of the value of linked administrative data sets for applied demographic and health research. We use a prospective population-based cohort approach to take advantage of the 2006 Canadian Census data linked to 3 years of hospital records in order to investigate the social determinants of diabetes hospitalizations. We offer compelling evidence of the social gradient in health, with results highlighting decreasing risk of potentially avoidable hospitalization associated with increasing household income. We also found consistently higher risks of hospitalization and 6-month rehospitalization among persons of Aboriginal identity, after controlling for many individual and community-level factors.

Résumé

On reconnaît de plus en plus la valeur de l’appariement de données administratives pour la recherche appliquée en démographie et en santé. Nous utilisons dans cet article une approche de cohorte prospective, qui tire parti de l’appariement des données du Recensement canadien de 2006 et de trois années d’enregistrements d’hospitalisation pour étudier les déterminants sociaux des hospitalisations liées au diabète. Nous offrons des preuves convaincantes des inégalités sociales en matière de santé, avec des résultats soulignant le risque décroissant d’hospitalisation potentiellement évitable suivant l’augmentation progressive du quintile de revenu du ménage. Des risques toujours plus élevés d’hospitalisation et de réadmission durant les six mois suivant l’hospitalisation initiale ont été aussi constatés chez les personnes d’identité autochtone, après avoir tenu compte de nombreux facteurs individuels et communautaires.

This is a preview of subscription content, access via your institution.

References

  1. Adib-Hajbaghery, M., Maghaminejad, F., & Abbasi, A. (2013). The role of continuous care in reducing readmission for patients with heart failure. Journal of Caring Sciences, 2(4), 255–267.

    Google Scholar 

  2. Agha, M. M., Glazier, R. H., & Guttmann, A. (2007). Relationship between social inequalities and ambulatory care-sensitive hospitalizations persists for up to 9 years among children born in a major Canadian urban centre. Ambulatory Pediatrics, 7(3), 258–262.

    Article  Google Scholar 

  3. Bennett, K. J., Probst, J. C., Vyavaharkar, M., & Glover, S. H. (2011). Lower rehospitalization rates among rural Medicare beneficiaries with diabetes. The Journal of Rural Health, 28, 227–234.

    Article  Google Scholar 

  4. Billings, J., Zeitel, L., Lukomnik, J., et al. (1993). Impact of socioeconomic status on hospital use in New York City. Health Affairs, 12(1), 162–173.

    Article  Google Scholar 

  5. Canadian Institute for Health Information. (2006). International statistical classification of diseases and related health problems, 10th revision. Canada: Canadian Institute for Health Information.

    Google Scholar 

  6. Canadian Institute for Health Information (2019). Discharge Abstract Database (DAD) metadata [online]. http://www.cihi.ca/en/types-of-care/hospital-care/acute-care/dad-metadata (Accessed 30 April 2019).

  7. Carrière, G., Garner, R., Sanmartin, C., and LHAD Research Team (2010). Acute-care hospitalizations and Aboriginal identity in Canada, 2001/2002. Health Research Working Paper Series, No. 005 (Catalogue no. 82-622-X). Ottawa: Statistics Canada.

  8. Carrière, G., Bougie, E., Kohen, D., Rotermann, M., & Sanmartin, C. (2016). Acute care hospitalization by Aboriginal identity, Canada, 2006 through 2008. Health Reports, 27(8), 3–11.

    Google Scholar 

  9. Connelly, R., Playford, C. J., Gayle, V., & Dibben, C. (2016). The role of administrative data in the big data revolution in social science research. Social Science Research, 59, 1–12.

    Article  Google Scholar 

  10. Crews, D. C., Gutiérrez, O. M., Fedewa, S. A., Luthi, J. C., Shoham, D., Judd, S. E., Powe, N. R., & McClellan, W. M. (2014). Low income, community poverty and risk of end stage renal disease. BMC Nephrology, 15(192) https://bmcnephrol.biomedcentral.com/articles/10.1186/1471-2369-15-192 (Accessed 30 April 2019).

  11. Doiron, D., Raina, P., & Fortier, I. (2013). Linking Canadian population health data: maximizing the potential of cohort and administrative data. Canadian Journal of Public Health, 104(3), e258–e261.

    Article  Google Scholar 

  12. Fischer, C., Lingsma, H. F., Marang-van de Mheen, P. J., et al. (2014). Is the readmission rate a valid quality indicator? A review of the evidence. PLoS One, 9(11), e112282 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112282 (accessed April 30, 2019).

    Article  Google Scholar 

  13. Gibson, O. R., Segal, L., & McDermott, R. A. (2013). A systematic review of evidence on the association between hospitalisation for chronic disease related ambulatory care sensitive conditions and primary health care resourcing. BMC Health Services Research, 13(336) https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-13-336 (accessed April 30, 2019).

  14. Glazier, R. H., Creatore, M. I., Cortinois, A. A., et al. (2004). Neighbourhood recent immigration and hospitalization in Toronto, Canada. Canadian Journal of Public Health, 95(3), 30–34.

    Article  Google Scholar 

  15. Greenwood, M. L., & de Leeuw, S. N. (2012). Social determinants of health and the future well-being of Aboriginal children in Canada. Paediatrics & Child Health, 17(7), 381–384.

    Google Scholar 

  16. Gupta, N., Crouse, D.L., & Balram, A. (2018). Income inequalities and potentially avoidable hospitalizations for diabetes mellitus: a Canadian population-based cohort study. Paper presented at the 52nd Annual Conference of the Canadian Economics Association. Montreal (June 1-3).

  17. Horizon Health Network. (2019). About us. http://en.horizonnb.ca/about-us.aspx (accessed 23 October 2019).

  18. Jones, K., Laurie, G., Stevens, L., Dobbs, C., Ford, D. V., & Lea, N. (2017). The other side of the coin: harm due to the non-use of health-related data. International Journal of Medical Informatics, 97, 43–51.

    Article  Google Scholar 

  19. Kennedy, S., Kidd, M. P., McDonald, J. T., & Biddle, N. (2015). The healthy immigrant effect: patterns and evidence from four countries. Journal of International Migration and Integration, 16, 317–332.

    Article  Google Scholar 

  20. Murphy, B., Zhang, X., & Dionne, C. (2010). Revising Statistics Canada’s Low Income Measure (LIM). Income Research Paper Series, No. 004 (Catalogue no. 75F0002M). Ottawa: Statistics Canada.

  21. Newbold, B. K. (2005). Self-rated health within the Canadian immigrant population: risk and the healthy immigrant effect. Social Science and Medicine, 60, 1359–1370.

    Article  Google Scholar 

  22. Ng, E. (2011). The healthy immigrant effect and mortality rates. Health Reports, 22, 25–29.

    Google Scholar 

  23. North East Local Health Integration Network. (2011). Aboriginal/First Nations and Métis Mental Health and Addictions Framework. North Bay: Ontario Local Health Integration Network.

    Google Scholar 

  24. Pappas, G., Hadden, W. C., Kozak, L. J., & Fisher, G. F. (1997). Potentially avoidable hospitalizations: inequalities in rates between US socioeconomic groups. American Journal of Public Health, 87(5), 811–816.

    Article  Google Scholar 

  25. Pichora, E., Polsky, J. Y., Catley, C., Perumal, N., Jin, J., & Allin, S. (2018). Comparing individual and area-based income measures: impact on analysis of inequality in smoking, obesity, and diabetes rates in Canadians 2003–2013. Canadian Journal of Public Health, 109(3), 410–418.

    Article  Google Scholar 

  26. Public Health Agency of Canada. (2011). Diabetes in Canada: facts and figures from a public health perspective. Ottawa: Public Health Agency of Canada.

    Google Scholar 

  27. Raphael, D. (2003). When social policy is health policy: why increasing poverty and low income threatens Canadians’ health and health care system. Canadian Review of Social Policy, 51, 9–28.

    Google Scholar 

  28. Rogers, W. H. (1993). Regression standard errors in clustered samples. Stata Technical Bulletin, 13, 19–23.

    Google Scholar 

  29. Ross, N. A., Tremblay, S., & Graham, K. (2004). Neighbourhood influences on health in Montreal, Canada. Social Science and Medicine, 59, 1485–1494.

    Article  Google Scholar 

  30. Rotermann, M., Sanmartin, C., Trudeau, R., & St-Jean, H. (2015). Linking 2006 Census and hospital data in Canada. Health Reports, 26(10), 10–20.

    Google Scholar 

  31. Sanchez, M., Vellanky, S., Herring, J., Liang, J., & Jia, H. (2008). Variations in Canadian rates of hospitalization for ambulatory care sensitive conditions. Healthcare Quarterly, 11(4), 20–22.

    Article  Google Scholar 

  32. Sanmartin, C, Khan, S., & the LHAD research team (2011). Hospitalizations for ambulatory care sensitive conditions (ACSC): the factors that matter. Health Research Working Paper Series, No. 007 (Catalogue No. 82-622-X). Ottawa: Statistics Canada.

  33. Statistics Canada (2006). 2006 Census of population [online]. http://www12.statcan.gc.ca/census-recensement/2006/index-eng.cfm (Accessed 30 April 2019).

  34. Statistics Canada (2011). From urban areas to population centres [online]. https://www.statcan.gc.ca/eng/subjects/standard/sgc/notice/sgc-06 (Accessed 30 April 2019).

  35. Statistics Canada (2013). Persons living in low-income neighbourhoods. NHS in Brief (Catalogue No. 99-014-X2011003). Ottawa: Statistics Canada.

  36. van Servellen, G., Fongwa, M., & D’Errico, E. M. (2006). Continuity of care and quality outcomes for people experiencing chronic conditions: a literature review. Nursing and Health Sciences, 8, 185–195.

    Article  Google Scholar 

  37. Wilkinson, R., & Marmot, M. (2003). Social determinants of health: the solid facts. Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Adele Balram and Margaret Holland for research assistance with data preparation and modeling, and review of the methodological descriptions. The data analysis was conducted at the NB-RDC, which is part of the Canadian Research Data Centre Network (CRDCN).

Funding

Financial support for this research was received from Diabetes Canada, the New Brunswick Health Research Foundation, and the Maritime Strategy for Patient-Oriented Research Support Unit. The services and activities provided by the NB-RDC are made possible by the financial or in-kind support of the Social Sciences and Humanities Research Council, the Canadian Institutes of Health Research, the Canadian Foundation for Innovation, Statistics Canada, and the University of New Brunswick.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Neeru Gupta or Dan Lawson Crouse.

Ethics declarations

The views expressed in this paper are those of the authors alone. The funders and partners had no role in study design, decision to publish, or preparation of the manuscript. The study complied with the University of New Brunswick’s Research Ethics Board, which does not require an internal institutional review for research projects using data accessed through the NB-RDC.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Crouse, D.L. Social Disparities in the Risk of Potentially Avoidable Hospitalization for Diabetes Mellitus: an Analysis with Linked Census and Hospital Data. Can. Stud. Popul. 46, 145–159 (2019). https://doi.org/10.1007/s42650-019-00012-9

Download citation

Keywords

  • Population health
  • Administrative data
  • Hospitalization
  • Diabetes mellitus
  • Health inequalities

Mots clés

  • Santé de la population
  • données administratives
  • hospitalisation
  • diabète sucré
  • inégalités en santé