Skip to main content

Advertisement

Log in

Automated analysis of fundus images for the diagnosis of retinal diseases: a review

  • Review
  • Published:
Research on Biomedical Engineering Aims and scope Submit manuscript

Abstract

Purpose

Colour fundus images are widely used in diagnosis treatment decision of several retinal diseases such as diabetic retinopathy (DR), glaucoma and age-related macular degeneration (AMD). These very common conditions must be detected early and monitored to prevent progression and avoid permanent damage. Fundus images revealed to be useful also for the diagnosis of cataracts.

In recent years, various automatic diagnostic support methods have been proposed in the literature, with the aim of facilitating widespread screening and obtaining quantitative, objective, and reproducible information.

Methods

In this review paper, an overview of traditional, machine learning and modern deep learning techniques for ophthalmic disease diagnosis (i.e. glaucoma, DR, AMD, and cataract) using retinal fundus images is presented. In addition, various publicly available image datasets used for such purposes are described.

Results

The current main challenges and findings are identified, as well as common aspects and discrepancies between the various methods developed for the various diseases.

Conclusion

The overview of what has been done about all pathologies, rather than only on a specific one, could favour a migration of the best solutions and, hopefully, the development of a more precise and clinically useful automatic analysis of all pathologies. Important critical insights and research trends are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Rahman AM, Molteno T, Molteno ACB. Fourier analysis of digital retinal images in estimation of cataract severity. Clin Exp Ophthalmol. 2008;36(7): 637–45. 10.1111/j.1442-9071.2008.01819.x (May 19, 2020).

  • Abràmoff MD et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmology 2013; 131(3): 351–57. https://doi.org/10.1001/jamaophthalmol.2013.1743 (February 16, 2022).

  • Abràmoff MD et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Ophthalmology & Visual Science 2016;57(13): 5200–5206. https://doi.org/10.1167/iovs.16-19964 (February 16, 2022).

  • Agurto C et al. Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Investigative Ophthalmology & Visual Science 2011;52(8): 5862–71. https://doi.org/10.1167/iovs.10-7075 (April 30, 2021).

  • Ahmad Hijazi MH, Coenen F, Zheng Y. Retinal image classification using a histogram based approach. In The 2010 International Joint Conference on Neural Networks (IJCNN), 2010;1–7.

  • Ajitha S, Akkara JD, Judy MV. Identification of glaucoma from fundus images using deep learning techniques. Indian J Ophthalmol. 2021;69(10):2702–9.

    Article  Google Scholar 

  • Akyol K, Şen B, Bayir Ş. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. Comput Math Meth Med. 2016;2016:6814791–1. https://pubmed.ncbi.nlm.nih.gov/27110272

  • Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V. 2015. Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J Ophthalmol 2015: 180972–180972. https://www.ncbi.nlm.nih.gov/pubmed/26688751.

  • Almazroa A et al. Optic disc segmentation for glaucoma screening system using fundus images. Clinical ophthalmology (Auckland, N.Z.) 2017; 11: 2017–29. https://www.ncbi.nlm.nih.gov/pubmed/29180847.

  • Almazroa A et al. Retinal fundus images for glaucoma analysis: the RIGA dataset. 2018. https://doi.org/10.1117/12.2293584.

  • Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39. https://pubmed.ncbi.nlm.nih.gov/22794258

    Article  Google Scholar 

  • Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860–9.

    Article  Google Scholar 

  • Bajwa MN, et al. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decision Making. 2019;19(1):136.

    Article  MathSciNet  Google Scholar 

  • Barakat MR, Madjarov B. Automated drusen quantitaion for clinical trials. Invest Ophthalmol Vis Sci 2004;45(13): 3017–3017.

  • Barriga ES et al. Multi-scale AM-FM for lesion phenotyping on age-related macular degeneration. In 2009 22nd IEEE International Symposium on Computer-Based Medical Systems, 2009; 1–5.

  • Bayer A, et al. Validity of a new disk grading scale for estimating glaucomatous damage: correlation with visual field damage. Am J Ophthalmol. 2002;133(6):758–63.

    Article  Google Scholar 

  • Bellemo V, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digital Health. 2019;1(1):e35–44. https://doi.org/10.1016/S2589-7500(19)30004-4.

    Article  Google Scholar 

  • Benzamin A, Chakraborty C. Detection of hard exudates in retinal fundus images using deep learning. In 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (IcIVPR), 2018; 465–69.

  • Burlina P, Freund DE, Dupas B, Bressler N. Automatic screening of age-related macular degeneration and retinal abnormalities. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2011; 3962–66.

  • Burlina P et al. Detection of age-related macular degeneration via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016;184–88.

  • Burlina P, et al. Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med. 2017;82:80–6.

    Article  Google Scholar 

  • Cao W, Shan J, Czarnek N, Li L. Microaneurysm detection in fundus images using small image patches and machine learning methods. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017;325–31.

  • Chai Y et al. 2017. Deep learning through two-branch convolutional neuron network for glaucoma diagnosis. In Smart Health, eds. Hsinchun Chen, Daniel Dajun Zeng, Elena Karahanna, and Indranil Bardhan. Cham: Springer International Publishing, 191–201.

  • Chen X et al. 9351 Automatic feature learning for glaucoma detection based on deep learning 2015a.

  • Chen X et al. Automatic feature learning for glaucoma detection based on deep learning. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, eds. Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi. Cham: Springer International Publishing, 2015b;669–77.

  • Chen H, Zeng X, Luo Y, Ye W. Detection of diabetic retinopathy using deep neural network. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018;1–5.

  • Cheng J et al. Automatic optic disc segmentation with peripapillary atrophy elimination. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011; 6224–27.

  • Chrástek R, et al. Automated segmentation of the optic nerve head for diagnosis of glaucoma. Funct Imaging Model Heart - FIMH03. 2005;9(4):297–314. http://www.sciencedirect.com/science/article/pii/S1361841505000101

    Google Scholar 

  • Christopher M, et al. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8(1):16685. https://doi.org/10.1038/s41598-018-35044-9.

    Article  Google Scholar 

  • Colijn JM, et al. Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology. 2017;124(12):1753–63. http://www.sciencedirect.com/science/article/pii/S0161642016324757

    Article  Google Scholar 

  • Dai L, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat Commun. 2021;12(1):3242. https://doi.org/10.1038/s41467-021-23458-5.

    Article  Google Scholar 

  • de la Torre J, Valls A, Puig D. A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing. 2020;396:465–76. https://www.sciencedirect.com/science/article/pii/S0925231219304539

    Article  Google Scholar 

  • DeAngelis MM, et al. Genetics of age-related macular degeneration (AMD). Hum Mol Genet. 2017;26(R1):R45–50.

    Article  Google Scholar 

  • Decencière E, et al. TeleOphta: machine learning and image processing methods for teleophthalmology. Special issue : ANR TECSAN : Technol Health Auto. 2013;34(2):196–203. https://www.sciencedirect.com/science/article/pii/S1959031813000237

    Google Scholar 

  • Decencière E et al. Feedback on a publicly distributed image database: the Messidor database. Image Analysis & Stereology; 2014;33, No 3 (2014). https://www.ias-iss.org/ojs/IAS/article/view/1155.

  • Dehghani A, Moghaddam H, Moin M-S. 2012. Optic disc localization in retinal images using histogram matching. EURASIP Journal on Image and Video Processing 2012.

  • Dong Y, Zhang Q, Qiao Z, Yang J. Classification of cataract fundus image based on deep learning. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 2017;1–5.

  • Early treatment diabetic retinopathy study design and baseline patient characteristics: ETDRS Report Number 7’. Ophthalmology 1991; 98(5): 741–56. https://doi.org/10.1016/S0161-6420(13)38009-9.

  • Edupuganti VG, Chawla A, Kale A. Automatic optic disk and cup segmentation of fundus images using deep learning. In 2018 25th IEEE International Conference on Image Processing (ICIP), 2018; 2227–31.

  • Eftekhari N, et al. Microaneurysm detection in fundus images using a two-step convolutional neural network. Biomed Eng Online. 2019;18(1):67. https://doi.org/10.1186/s12938-019-0675-9.

    Article  Google Scholar 

  • Fingeret M, Medeiros FA, Jr Susanna R, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry (St Louis, Mo). 2005;76(11):661–8.

    Article  Google Scholar 

  • Foracchia M, Grisan E, Ruggeri A. Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging. 2004;23(10):1189–95.

    Article  Google Scholar 

  • Fraga A et al. Precise segmentation of the optic disc in retinal fundus images. In, 2011; 584–91.

  • Freund DE, Bressler N, Burlina P. Automated detection of drusen in the macula. 2009

  • Fu H, Cheng J, Xu Y, Zhang C, et al. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging. 2018a;37(11):2493–501.

    Article  Google Scholar 

  • Fu H, Cheng J, Xu Y, Wong DWK, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging. 2018b;37(7):1597–605.

    Article  Google Scholar 

  • Fumero F et al. RIM-ONE: An open retinal image database for optic nerve evaluation. 2011 24th International Symposium on Computer-Based Medical Systems (CBMS): 2011; 1–6.

  • García G et al. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images. In ICANN. 2017

  • García-Floriano A, Ferreira-Santiago Á, Camacho-Nieto O, Yáñez-Márquez C. A machine learning approach to medical image classification: detecting age-related macular degeneration in fundus images. Comput Electr Eng. 2019;75:218–29. https://www.sciencedirect.com/science/article/pii/S004579061731577X

    Article  Google Scholar 

  • Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9. https://doi.org/10.1016/j.ophtha.2017.02.008.

    Article  Google Scholar 

  • Garway-Heath DF, Ruben ST, Viswanathan A, Hitchings RA. Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br J Ophthalmol. 1998;82(10):1118–24.

    Article  Google Scholar 

  • George J, et al. Radiological classification of meniscocapsular tears of the anterolateral portion of the lateral meniscus of the knee. Australas Radiol. 2000;44(1):19–22. https://doi.org/10.1046/j.1440-1673.2000.00766.x.

    Article  Google Scholar 

  • Goh, JHL et al. Artificial intelligence for cataract detection and management. The Asia-Pacific Journal of Ophthalmology 2020; 9(2). https://journals.lww.com/apjoo/Fulltext/2020/04000/Artificial_Intelligence_for_Cataract_Detection_and.6.aspx.

  • Gómez-Valverde JJ, et al. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Optics Express. 2019;10(2):892–913. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-2-892

    Article  Google Scholar 

  • Gondal WM et al. Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In 2017 IEEE International Conference on Image Processing (ICIP), 2017;2069–73.

  • Grassmann F, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125(9):1410–20.

    Article  Google Scholar 

  • Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016a;316(22):2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  Google Scholar 

  • Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016b;316(22):2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  Google Scholar 

  • Guo L, et al. A computer-aided healthcare system for cataract classification and grading based on fundus image analysis. Special Issue: Inform Technol Enhanc Healthcare. 2015;69:72–80. http://www.sciencedirect.com/science/article/pii/S0166361514001754

    Google Scholar 

  • Gupta D, Chen P. Glaucoma. Am Fam Physician. 2016;93:668–74.

    Google Scholar 

  • Haleem MS, Han L, van Hemert J, Li B. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph. 2013;37(7):581–96. http://www.sciencedirect.com/science/article/pii/S0895611113001468

    Article  Google Scholar 

  • Harini V, Bhanumathi V. Automatic cataract classification system. In 2016 International Conference on Communication and Signal Processing (ICCSP), 2016;0815–19

  • Harizman N et al. The ISNT rule and differentiation of normal from glaucomatous eyes. Archives of ophthalmology (Chicago, Ill. : 1960) 2006;124(11): 1579–83.

  • Heydon P, et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2021;105(5):723. http://bjo.bmj.com/content/105/5/723.abstract

    Article  Google Scholar 

  • Hijazi MHA, Coenen F, Zheng Y. Retinal image classification for the screening of age-related macular degeneration. In Research and Development in Intelligent Systems XXVII, eds. Max Bramer, Miltos Petridis, and Adrian Hopgood. London: Springer London, 2011;325–38.

  • Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging. 2003;22(8):951–8.

    Article  Google Scholar 

  • Hornova J, et al. Correlation of disc damage likelihood scale, visual field, and Heidelberg Retina tomograph II in patients with glaucoma. Eur J Ophthalmol. 2008;18:739–47.

    Article  Google Scholar 

  • Hu M, Zhu C, Li X, Xu Y. Optic cup segmentation from fundus images for glaucoma diagnosis. Bioengineered. 2017;8(1):21–8. https://www.ncbi.nlm.nih.gov/pubmed/27764542

    Article  Google Scholar 

  • Issac A, Parthasarthi M, Dutta MK. An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 2015;143–47.

  • Janghorbani M, Jones RB, Allison SP. Incidence of and risk factors for proliferative retinopathy and its association with blindness among diabetes clinic attenders. Ophthalmic Epidemiol. 2000;7(4):225–41. https://doi.org/10.1076/opep.7.4.225.4171.

    Article  Google Scholar 

  • Jiang H et al. An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019; 2045–48.

  • Jolley E, et al. Evidence on cataract in low- and middle-income countries: an updated review of reviews using the evidence gap maps approach. Int Health. 2022;14(Suppl 1):i68–83.

    Article  Google Scholar 

  • Joshi GD, Sivaswamy J, Krishnadas SR. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans Med Imaging. 2011;30(6):1192–205.

    Article  Google Scholar 

  • Kälviäinen RVJPH, Uusitalo H. DIARETDB1 diabetic retinopathy database and evaluation protocol. In Citeseer, 2007;61.

  • Kanagasingam Y. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665–5. https://doi.org/10.1001/jamanetworkopen.2018.2665.

  • Kanagasingam Y et al. Progress on retinal image analysis for age related macular degeneration. Progress in retinal and eye research 2013;38.

  • Kankanahalli S, et al. Automated classification of severity of age-related macular degeneration from fundus photographs. Invest Ophthalmol Vis Sci. 2013;54(3):1789–96.

    Article  Google Scholar 

  • Khojasteh P, Aliahmad B, Kumar DK. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. BMC Ophthalmol 2018;18(1): 288. https://doi.org/10.1186/s12886-018-0954-4.

  • Kim J, Tran L, Chew EY, Antani S. Optic disc and cup segmentation for glaucoma characterization using deep learning. In 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 2019; 489–94.

  • Kolhe S, Guru SK. Remote automated cataract detection system based on fundus images. 2016

  • Köse C, et al. A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images. J Med Syst. 2010;34(1):1–13.

    Article  Google Scholar 

  • Kumar V, Sinha N. Automatic optic disc segmentation using maximum intensity variation. In IEEE 2013 Tencon - Spring, 2013; 29–33.

  • Kumar J, Seelamantula CS, Kamath Y, Jampala R. Rim-to-disc ratio outperforms cup-to-disc ratio for glaucoma prescreening. Scientific Reports 2019;9.

  • Lam C, Yu C, Huang L, Rubin D. Retinal lesion detection with deep learning using image patches. Invest Ophthalmol Vis Sci. 2018;59(1):590–6. https://doi.org/10.1167/iovs.17-22721.

    Article  Google Scholar 

  • Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Diabetic Retinopathy - an Overview. 2017;139:7–14. https://www.sciencedirect.com/science/article/pii/S004269891730055X

    Google Scholar 

  • Lee N, Laine AF, Smith TR. Learning non-homogenous textures and the unlearning problem with application to drusen detection in retinal images. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008;1215–18.

  • Lekadir K et al. 2021. FUTURE-AI: Guiding principles and consensus recommendations for trustworthy artificial intelligence in future medical imaging. arXiv e-prints: arXiv-2109.

  • Li A, Wang Y, Cheng J, Liu J. Combining multiple deep features for glaucoma classification. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018; 985–89.

  • Li T, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci. 2019;501:511–22. https://www.sciencedirect.com/science/article/pii/S0020025519305377

    Article  Google Scholar 

  • Li F et al. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2020

  • Lim G, Cheng Y, Hsu W, Lee ML. Integrated optic disc and cup segmentation with deep learning. In 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), 2015; 162–69.

  • Liu Y, et al. Glycemic exposure and blood pressure influencing progression and remission of diabetic retinopathy: a longitudinal cohort study in GoDARTS. Diabetes Care. 2013;36(12):3979–84. https://doi.org/10.2337/dc12-2392.

    Article  Google Scholar 

  • Lois N, et al. Endothelial progenitor cells in diabetic retinopathy. Front Endocrinol. 2014;5:44.

    Article  Google Scholar 

  • Lu S. Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging. 2011;30:2126–33.

    Article  Google Scholar 

  • Lupascu CA, Tegolo D, Rosa LD. Automated detection of optic disc location in retinal images’ In 2008 21st IEEE International Symposium on Computer-Based Medical Systems, 2008;17–22.

  • Mahfouz A, Fahmy A. Fast localization of the optic disc using projection of image features. Image Process IEEE Trans. 2011;19:3285–9.

    Article  MathSciNet  Google Scholar 

  • Marin D, Gegundez M, Suero A, Bravo JM. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Computer methods and programs in biomedicine 2014;118.

  • Minh PT, Quang. Automatic drusen segmentation for age-related macular degeneration in fundus images using deep learning. Electronics 2020;9.

  • Mishra M, Nath M, Dandapat S. Glaucoma detection from color fundus images. Intl J Comput Commun Technol (IJCCT). 2011;2:7–11.

    Google Scholar 

  • Mookiah MRK, Acharya UR, Koh JEW, Chandran V, et al. Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images. Comput Biol Med. 2014a;53:55–64.

    Article  Google Scholar 

  • Mookiah MRK, Acharya UR, Koh JEW, Chua CK, et al. Decision support system for age-related macular degeneration using discrete wavelet transform. Med Biol Eng Comput. 2014b;52(9):781–96.

    Article  Google Scholar 

  • Mora AD, Vieira PM, Manivannan A, Fonseca JM. Automated drusen detection in retinal images using analytical modelling algorithms. Biomed Eng Online. 2011;10(1):59. https://doi.org/10.1186/1475-925X-10-59.

    Article  Google Scholar 

  • Morgan WH, Cooper RL, Constable IJ, Eikelboom RH. Automated extraction and quantification of macular drusen from fundal photographs. Aust N Z J Ophthalmol. 1994;22(1):7–12.

    Article  Google Scholar 

  • Müller-Breitenkamp U, Ohrloff C, Hockwin O. Aspects of physiology, pathology and epidemiology of cataract. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1992;89(4):257–67.

    Google Scholar 

  • Nakagawa T et al. Recognition of optic nerve head using blood-vessel-erased image and its application to production of simulated stereogram in computer-aided diagnosis system for retinal images. IEICE Transactions on Information and Systems: 2006; 2491–2501.

  • Nakahara K et al. Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone. British Journal of Ophthalmology: bjophthalmol-2020-318107. 2021. http://bjo.bmj.com/content/early/2021/07/14/bjophthalmol-2020-318107.abstract.

  • Natarajan D, Sankaralingam E, Balraj K, Thangaraj V. Automated segmentation algorithm with deep learning framework for early detection of glaucoma. Concurr Comput Practice Experience. 2021;33(10):e6181.

    Article  Google Scholar 

  • Newman-Casey PA, Verkade AJ, Oren G, Robin AL. Gaps in Glaucoma Care: A systematic review of monoscopic disc photos to screen for glaucoma. Expert Rev Ophthalmol. 2014;9(6):467–74. https://www.ncbi.nlm.nih.gov/pubmed/26097497

    Article  Google Scholar 

  • Niemeijer M, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging. 2010;29(1):185–95.

    Article  Google Scholar 

  • Orlando J, Prokofyeva E, del Fresno M, Blaschko M. Convolutional neural network transfer for automated glaucoma identification. 2016

  • Orlando J et al. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. 2019

  • Osareh A, Mirmehdi M, Thomas B, Markham R. Comparison of colour spaces for optic disc localisation in retinal images. In Object Recognition Supported by User Interaction for Service Robots, 2002; 743–46 vol.1.

  • Ovreiu S et al. 2020. Early detection of glaucoma using residual networks. In 2020 13th International Conference on Communications (COMM), 161–64.

  • Parvathi S, Devi N. Automatic drusen detection from colour retinal images. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007) 2007;2: 377–81.

  • Pead E, et al. Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol. 2019;64(4):498–511. http://www.sciencedirect.com/science/article/pii/S0039625718302078

    Article  Google Scholar 

  • Peli E, Lahav M. Drusen measurement from fundus photographs using computer image analysis. Ophthalmology. 1986;93(12):1575–80.

    Article  Google Scholar 

  • Phan TV, Seoud L, Chakor H, Cheriet F. Automatic screening and grading of age-related macular degeneration from texture analysis of fundus images. ed. Xinjian Chen. J Ophthalmol. 2016;2016:5893601. https://doi.org/10.1155/2016/5893601.

    Article  Google Scholar 

  • Phasuk S et al. 2019. Automated glaucoma screening from retinal fundus image using deep learning. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2019: 904–7.

  • Porwal P et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 2018;3(3).

  • Pratt H et al. Convolutional neural networks for diabetic retinopathy. 20th Conference on Medical Image Understanding and Analysis (MIUA 2016) 90: 2016;200–205. https://www.sciencedirect.com/science/article/pii/S1877050916311929.

  • Prentašić P et al. Diabetic retinopathy image database(DRiDB): a new database for diabetic retinopathy screening programs research. In 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), 2013;711–16.

  • Prum BE Jr. et al. Primary Open-Angle Glaucoma Preferred Practice Pattern® Guidelines. Ophthalmology 2016;123(1): P41–111. 10.1016/j.ophtha.2015.10.053 (January 30, 2020).

  • Qiao Z, Zhang Q, Dong Y, Yang J. Application of SVM based on genetic algorithm in classification of cataract fundus images. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 2017; 1–5.

  • Quellec G, Russell SR, Abramoff MD. Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging. 2011;30(2):523–33.

    Article  Google Scholar 

  • Quellec G, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–93. https://www.sciencedirect.com/science/article/pii/S136184151730066X

    Article  Google Scholar 

  • Raghavendra U, et al. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018;441:41–9. http://www.sciencedirect.com/science/article/pii/S0020025518300744

    Article  MathSciNet  Google Scholar 

  • Rapantzikos K, Zervakis M. Nonlinear Enhancement And Segmentation Algorithm For The Detection Of Age-Related Macular Degeneration (AMD) In Human Eye’s Retina. In Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001; 1055–58 vol.3.

  • Rapantzikos K, Zervakis M, Balas K. Detection and segmentation of drusen deposits on human retina: potential in the diagnosis of age-related macular degeneration. Med Image Anal. 2003;7(1):95–108.

    Article  Google Scholar 

  • Remeseiro B et al. Automatic drusen detection from digital retinal images: AMD prevention 2009.

  • Ruamviboonsuk P, et al. Deep Learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digital Med. 2019;2(1):25. https://doi.org/10.1038/s41746-019-0099-8.

    Article  Google Scholar 

  • Russakovsky O, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52. https://doi.org/10.1007/s11263-015-0816-y.

    Article  MathSciNet  Google Scholar 

  • Safi H, Safi S, Hafezi-Moghadam A, Ahmadieh H. Early detection of diabetic retinopathy. Surv Ophthalmol. 2018;63(5):601–8. https://doi.org/10.1016/j.survophthal.2018.04.003.

    Article  Google Scholar 

  • Sambyal N, Saini P, Syal R, Gupta V. Modified U-net architecture for semantic segmentation of diabetic retinopathy images. Biocybern Biomed Eng. 2020;40(3):1094–109. https://www.sciencedirect.com/science/article/pii/S0208521620300747

    Article  Google Scholar 

  • Sayres R, et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology. 2019;126(4):552–64. https://doi.org/10.1016/j.ophtha.2018.11.016.

    Article  Google Scholar 

  • Scottish Intercollegiate Guidelines Network. Management of diabetes: a national clinical guideline 2014. https://www.sign.ac.uk/assets/sign116.pdf.

  • Sekhar S, Al-Nuaimy W, Nandi AK. Automated localisation of retinal optic disk using Hough transform. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008;1577–80.

  • Serener A, Serte S. Transfer learning for early and advanced glaucoma detection with convolutional neural networks. In 2019 Medical Technologies Congress (TIPTEKNO), 2019;1–4.

  • Sevastopolsky A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-net convolutional neural network. Patt Recog Image Anal. 2017;27(3):618–24. https://doi.org/10.1134/S1054661817030269.

    Article  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14. https://doi.org/10.1016/j.diabres.2009.10.007.

    Article  Google Scholar 

  • Shin DS, Javornik NB, Berger JW. Computer-assisted, interactive fundus image processing for macular drusen quantitation. Ophthalmology. 1999;106(6):1119–25.

    Article  Google Scholar 

  • Sivaswamy J et al. Drishti-GS: retinal image dataset for optic nerve head(onh) segmentation. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014; 53–56.

  • Smith RT et al. Automated Detection of macular drusen using geometric background leveling and threshold selection. Archives of ophthalmology (Chicago, Ill. : 1960) 2005;123(2): 200–206.

  • Soliz P, Wilson M, Nemeth S, Nguyen P. Computer-aided methods for quantitative assessment of longitudinal changes in retinal images presenting with maculopathy. Proceedings of SPIE - The International Society for Optical Engineering 2002;4681.

  • Song W, Wang P, Zhang X, Wang Q. Semi-supervised learning based on cataract classification and grading. In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), 2016;641–46.

  • Soorya M, Issac A, Dutta MK. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int J Med Inform. 2018;110:52–70. http://www.sciencedirect.com/science/article/pii/S138650561730429X

    Article  Google Scholar 

  • Spaeth G, Ichhpujani P. The ethics of treating or not treating glaucoma. J Curr Glaucoma Practice With Dvd. 2010;3:7–11.

    Article  Google Scholar 

  • Sun X et al. Optic disc segmentation from retinal fundus images via deep object detection networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018;5954–57.

  • Tan JH, et al. Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci. 2017;420:66–76. https://www.sciencedirect.com/science/article/pii/S0020025517308927

    Article  Google Scholar 

  • Tan JH, et al. Age-related macular degeneration detection using deep convolutional neural network. Futur Gener Comput Syst. 2018;87:127–35. https://www.sciencedirect.com/science/article/pii/S0167739X17319167

    Article  Google Scholar 

  • Taylor HR. Global blindness: the progress we are making and still need to make. Asia-Pacific J Ophthalmol (Philadelphia, Pa.) 2019;8(6): 424–28.

  • Thakur N, Juneja M. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control. 2018;42:162–89. http://www.sciencedirect.com/science/article/pii/S1746809418300211

    Article  Google Scholar 

  • Tham Y-C et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology 2014;121(11): 2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013 (January 30, 2020).

  • Ting DSW, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    Article  Google Scholar 

  • Tjandrasa H, Wijayanti A, Suciati N. Optic nerve head segmentation using hough transform and active contours. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2012;10:531.

    Article  Google Scholar 

  • Tsiknakis N, et al. Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med. 2021;135:104599. https://www.sciencedirect.com/science/article/pii/S0010482521003930

    Article  Google Scholar 

  • van Grinsven MJJP, et al. Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images. Invest Ophthalmol Vis Sci. 2013;54(4):3019–27.

    Article  Google Scholar 

  • Vinícius Dos Santos Ferreira M, et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma. Expert Syst Appl. 2018;110:250–63. https://www.sciencedirect.com/science/article/pii/S0957417418303567

    Article  Google Scholar 

  • Walter T, Klein J-C. Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. 2001

  • Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng. 2018a;72:274–82. https://www.sciencedirect.com/science/article/pii/S0045790618302556

    Article  Google Scholar 

  • Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng. 2018b;72:274–82. https://www.sciencedirect.com/science/article/pii/S0045790618302556

    Article  Google Scholar 

  • Wang Z et al. Zoom-in-net: deep mining lesions for diabetic retinopathy detection. CoRR abs/1706.04372. 2017. http://arxiv.org/abs/1706.04372.

  • Wang X, Lu Y, Wang Y, Chen W-B. Diabetic retinopathy stage classification using convolutional neural networks’. In 2018 IEEE International Conference on Information Reuse and Integration (IRI), 2018; 465–71.

  • Wang L et al. Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network. Pattern Recognition 2021;112.

  • Welfer D, et al. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med. 2010;40(2):124–37. http://www.sciencedirect.com/science/article/pii/S0010482509002042

    Article  Google Scholar 

  • Wilkinson CP, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82. https://doi.org/10.1016/S0161-6420(03)00475-5.

    Article  Google Scholar 

  • Wong D et al. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images. Proceedings of SPIE - The International Society for Optical Engineering 2009;7260.

  • Wong WL, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16. http://www.sciencedirect.com/science/article/pii/S2214109X13701451

    Article  Google Scholar 

  • Wu L, et al. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes. 2013;4(6):290–4.

    Article  Google Scholar 

  • Xu X, et al. A hybrid global-local representation CNN Model for automatic cataract grading. IEEE J Biomed Health Inform. 2020;24(2):556–67.

    Article  Google Scholar 

  • Xu X, et al. Automatic glaucoma detection based on transfer induced attention network. Biomed Eng Online. 2021;20(1):39.

    Article  Google Scholar 

  • Yan Z et al. Learning mutually local-global U-nets for high-resolution retinal lesion segmentation in fundus images. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019; 597–600.

  • Yang W, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362(12):1090–101. https://doi.org/10.1056/NEJMoa0908292.

    Article  Google Scholar 

  • Yang M et al. 2013. Classification of retinal image for automatic cataract detection. In 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), 674–79.

  • Yau JWY, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. https://doi.org/10.2337/dc11-1909.

    Article  Google Scholar 

  • Yin F et al. Model-based optic nerve head segmentation on retinal fundus images. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011a; 2626–29.

  • Yin F et al. 2012. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2011b;1–6.

  • Youssif AAA, Ghalwash AZ, Ghoneim AASA. Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging. 2008;27(1):11–8.

    Article  Google Scholar 

  • Yu H, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed. 2012;16(4):644–57.

    Article  Google Scholar 

  • Yu S, Xiao D, Frost S, Kanagasingam Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph. 2019;74:61–71. http://www.sciencedirect.com/science/article/pii/S0895611118305573

    Article  Google Scholar 

  • Zhang Z et al. ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010; 3065–68.

  • Zhang D, Yi Y, Shang X, Peng Y. Optic disc localization by projection with vessel distribution and appearance characteristics. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012; 3176–79.

  • Zhang L et al. Automatic cataract detection and grading using deep convolutional neural network 2017.

  • Zhang H, et al. Automatic cataract grading methods based on deep learning. Comput Methods Prog Biomed. 2019;182:104978.

    Article  Google Scholar 

  • Zhang W, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl-Based Syst. 2019a;175:12–25. https://www.sciencedirect.com/science/article/pii/S0950705119301303

    Article  Google Scholar 

  • Zhang W, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl-Based Syst. 2019b;175:12–25. https://www.sciencedirect.com/science/article/pii/S0950705119301303

    Article  Google Scholar 

  • Zhao Z et al. BiRA-Net: bilinear attention net for diabetic retinopathy grading. In 2019 IEEE International Conference on Image Processing (ICIP), 2019;1385–89.

  • Zheng Y, Hijazi MHA, Coenen F. Automated “Disease/No Disease” Grading of age-related macular degeneration by an image mining approach. Investigative Ophthalmology & Visual Science 2012;53(13): 8310–18. https://doi.org/10.1167/iovs.12-9576 (April 30, 2021).

  • Zheng J et al. Fundus image based cataract classification. In 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings. 2014; 90–94.

  • Zheng R, et al. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network. Biomed Opt Express. 2018;9(10):4863–78. http://opg.optica.org/boe/abstract.cfm?URI=boe-9-10-4863

    Article  Google Scholar 

  • Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2) https://journals.lww.com/co-ophthalmology/Fulltext/2019/03000/Artificial_intelligence_in_glaucoma.5.aspx

  • Zhu X, Rangayyan RM. Detection of the optic disc in images of the retina using the Hough Transform. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008; 3546–49.

  • Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Special Issue Ophthal Med Image Anal. 2017;55:28–41. https://www.sciencedirect.com/science/article/pii/S0895611116300775

    Google Scholar 

Download references

Disclaimer

This paper reflects only the author’s view, and the Commission is not responsible for any use that may be made of the information it contains.

Funding

This work was partially supported by the H2020 specific targeted research project SeeFar: Smart glasses for multifacEted visual loss mitigation and chronic disEase prevention indicator for healthier, saFer, and more productive workplAce foR ageing population. (H2020-SC1- DTH-2018-1, GA No 826429) (www.see-far.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexa Berto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 43 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berto, A., Scarpa, F., Tsiknakis, N. et al. Automated analysis of fundus images for the diagnosis of retinal diseases: a review. Res. Biomed. Eng. 40, 225–251 (2024). https://doi.org/10.1007/s42600-023-00320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42600-023-00320-9

Keywords

Navigation