Skip to main content

Two-dimensional ultrasonic transducer array for shear wave elastography in deep tissues: a preliminary study

Abstract

Purpose

This paper investigates the use of shear wave elastography (SWE) in deep tissues with a two-dimensional (2D) transducer array.

Methods

A 130-element 800-kHz 2D array for SWE in regions deeper than 100 mm is designed, fabricated, and characterized. SWE simulations are performed with the proposed 2D array in a tissue-like medium.

Results

The pressure field of the proposed transducer was recorded and utilized to simulate the generation of acoustic radiation force in deep tissues. The elasticity map of the tissue was successfully reconstructed by tracking the speed of shear wave propagation at 120 mm depth.

Conclusion

This study suggests that a 2D transducer with proper parameters may provide a means for extending the depth range of SWE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Azar L, Shi Y, Wooh SC. Beam focusing behavior of linear phased arrays. NDT and E Int. 2000;33(3):189–98.

    Google Scholar 

  • Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Google Scholar 

  • Bota S, Sporea I, Sirli R, Popescu A, Danila M, Jurchis A, et al. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of acoustic radiation force impulse (ARFI) elastography - analysis of a cohort of 1031 subjects. Eur J Radiol. 2014;83(2):268–72.

    Google Scholar 

  • Bruno C, Minniti S, Bucci A, Mucelli RP. ARFI: from basic principles to clinical applications in diffuse chronic disease—a review. Insights Imaging. 2016;7(5):735–46.

    Google Scholar 

  • Cardoso FM, Santos DS, and Furuie SS. “Acoustic radiation force impulse in deep tissues using matricial array transducers.” In Proc. of the Brazilian Cong. on Biomed. Eng. Foz do Iguaçu, Brazil: SBEB;2016. pp. 1075–78

  • Chami L, Yue JL, Lucidarme O, Lefort M, and Pellot-Barakat C. “Feasibility of liver shear wave elastography with different transducers.” IEEE International Ultrasonics Symposium, IUS 2016-Novem; 2016. 1–4

  • Chen S, Urban MW, Pislaru C, Kinnick R, Zheng Y, Yao A, et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):55–62.

    Google Scholar 

  • Dewall RJ. Ultrasound Elastography: principles, techniques, and clinical applications. Crit Rev Biomed Eng. 2013;41(1):1–19.

    Google Scholar 

  • Doherty J, Trahey G, Nightingale K, Palmeri M. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(4):685–701.

    Google Scholar 

  • Ergün AS. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force. Ultrasonics. 2011;51(7):786–94.

    Google Scholar 

  • Firouzi K, Cox BT, Treeby BE, Saffari N. A first-order k -space model for elastic wave propagation in heterogeneous media. J Acoust Soc Am. 2012;132(3):1271–83.

    Google Scholar 

  • Frulio N, Trillaud H. Ultrasound Elastography in liver. Diagn Interv Imaging. 2013;94(5):515–34.

    Google Scholar 

  • Ganguli A, Gao RX, Liang K, Jundt J. Optimal ultrasonic array focusing in attenuative media. Ultrasonics. 2011;51(8):911–20.

    Google Scholar 

  • Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–95.

    Google Scholar 

  • Goldberg RL, Smith SW. Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(5):761–71.

    Google Scholar 

  • Hunt JW, Arditi M, Stuart Foster F. Ultrasound transducers for pulse-echo medical imaging. IEEE Trans Biomed Eng. 1983;BME-30(8):453–81.

    Google Scholar 

  • Kaminuma C, Tsushima Y, Matsumoto N, Kurabayashi T, Taketomi-Takahashi A, Endo K. Reliable measurement procedure of virtual touch tissue quantification with acoustic radiation force impulse imaging. J Ultrasound Med. 2011;30(6):745–51.

    Google Scholar 

  • Kino GS. Acoustic waves: devices, imaging, and analog signal processing. edited by Cliffs E. Bergen: Prentice-Hall;1987

  • Kinsler LE, Frey AR, Coppens AB, and Sanders JV. Fundamentals of acoustics. 4th ed. New York;2000

  • Konofagou E, Maleke C, Vappou J. Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring. Curr Med Imaging Rev. 2012;8(1):16–26.

    Google Scholar 

  • Konofagou E, Thierman J, Hynynen K. A focused ultrasound method for simultaneous diagnostic and therapeutic applications - a simulation study. Phys Med Biol. 2001;46(11):2967–84.

    Google Scholar 

  • Krimholtz R, Leedom DA, Matthaei GL. New equivalent circuits for elementary piezoelectric transducers. Electron Lett. 1970;6(13):398–9.

    Google Scholar 

  • Lee HY, Lee JH, Shin JH, Kim SY, Shin HJ, Park JS, et al. Shear wave elastography using ultrasound: effects of anisotropy and stretch stress on a tissue phantom and in vivo reactive lymph nodes in the neck. Ultrasonography. 2017;36(1):25–32.

    Google Scholar 

  • Lee JH, Choi SW. A parametric study of ultrasonic beam profiles for a linear phased array transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):644–50.

    Google Scholar 

  • Lizzi FL, Muratore R, Deng CX, Ketterling JA, Kaisar Alam S, Mikaelian S, et al. Radiation-force technique to monitor lesions during ultrasonic therapy. Ultrasound Med Biol. 2003;29(11):1593–605.

    Google Scholar 

  • Myers RP, Pomier-Layrargues G, Kirsch R, Pollett A, Duarte-Rojo A, Wong D, et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology. 2012;55(1):199–208.

    Google Scholar 

  • Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001;110(1):625–34.

    Google Scholar 

  • Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2012;7(4):328–39.

    Google Scholar 

  • de Oliveira TF. Estudo Do Processo de Corte de Cerâmicas Piezelétricas Com Discos Adiamantados Para a Fabricação de Piezocompósitos [Master’s Thesis]. Sao Paulo: University of Sao Paulo; 2007.

    Google Scholar 

  • Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods. Interface Focus. 2011;1(4):553–64.

    Google Scholar 

  • Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–58.

    Google Scholar 

  • Palmeri M, Sharma A, Bouchard R, Nightingale R, Nightingale K. A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;13(14–15):1133–45.

    Google Scholar 

  • Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2012;57:5359–60.

    Google Scholar 

  • Prieur F and Catheline S. “Simulation of shear wave elastography imaging using the toolbox ‘k-Wave.’” in Proc. Mtgs. Acoust. Acoustical Society of America;2016. Vol. 29

  • Prieur F, Sapozhnikov OA. Modeling of the acoustic radiation force in elastography. J Acoust Soc Am. 2017;142(2):947–61.

    Google Scholar 

  • Von Ramm OT, Smith SW. Beam steering with linear arrays. IEEE Trans Biomed Eng. 1983;BME-30(8):438–52.

    Google Scholar 

  • Rasmussen MF and Jensen JA. “3-D ultrasound imaging performance of a row-column addressed 2-D array transducer: a measurement study.” IEEE International Ultrasonics Symposium, IUS;2013. 1460–63.

  • Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography. 2017;36(3):185–97.

    Google Scholar 

  • Sadeghi S, Rothenberger S, Akbarian D, Daniel H. Effect of frequency and focal depth of push pulses on acoustic intensity, mechanical index, and shear wave amplitude for elastography imaging. SM J Biomed Eng. 2017;3(1):1–6.

    Google Scholar 

  • Santos D, Cardoso F, Furuie S. Two-Dimensional Ultrasound Transducer Array for Acoustic Radiation Force Impulse Imaging. In: In Procceedings of the 24th ABCM International Congress of Mechanical Engineering. Curitiba: ABCM; 2017.

    Google Scholar 

  • dos Santos DS. Shear wave elastography with two-dimensional ultrasound transducer [Master’s thesis]. Sao Paulo: University of Sao Paulo; 2018.

    Google Scholar 

  • Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82.

    Google Scholar 

  • Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging : a new ultrasonic technology of medical diagnostic. Ultrasound Med Biol. 1998;24(9):1419–35.

    Google Scholar 

  • Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47.

    Google Scholar 

  • Sigrist RMS, Liau J, El Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.

    Google Scholar 

  • Treeby BE, Jaros J, Rohrbach D, Cox BT. Modelling elastic wave propagation using the K-wave MATLAB toolbox. IEEE Int Ultrason Symp. 2014;4.

  • Turnbull DH, Stuart Foster F. Beam steering with pulsed two-dimensional transducer arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(4):320–33.

    Google Scholar 

  • Turnbull DH, Stuart Foster F. Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39:464–75.

    Google Scholar 

  • Verweij MD, Treeby BE, van Dongen KWA, and Demi L. “Simulation of ultrasound fields.” In Comprehensive Biomedical Physics. Elsevier;2014. Pp. 465–500

  • W. Schmerr L. Fundamentals of ultrasonic phased arrays. In: Barber JR, Klarbring A, editors. in Solid Mechanics and Its Applications. Cham: Springer; 2015.

    Google Scholar 

  • Wang CZ, Zheng J, Huang ZP, Yang X, Song D, Zeng J, et al. Influence of measurement depth on the stiffness assessment ofhealthy liver with real-time shear wave Elastography. Ultrasound Med Biol. 2014;40(3):461–9.

    Google Scholar 

  • Wooh S-C, Shi Y. Optimum beam steering of linear phased arrays. Wave Motion. 1999;29:245–65.

    Google Scholar 

  • Zhao H, Song P, Urban MW, Kinnick RR, Yin M, Greenleaf JF, et al. Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam. Ultrasound Med Biol. 2011;37(11):1884–92.

    Google Scholar 

  • Zhou Q, Cha JH, Huang Y, Zhang R, Cao W, Kirk Shung K. Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):213–9.

    Google Scholar 

  • Zhou Q, Lam KH, Zheng H, Qiu W, Kirk Shung K. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog Mater Sci. 2014;66:87–111.

    Google Scholar 

  • Zhou S, Robert J-l, Fraser J, Shi Y, Xie H, Shamdasani V. Finite element modeling for shear wave elastography. IEEE Int Ultrason Symp. 2011;2011:2400–3.

Download references

Funding

This work was supported by Capes under Grant No. 1710132 and by Fapesp under Grant No. 2014/24790-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalma Simões dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.S., Cardoso, F.M. & Furuie, S.S. Two-dimensional ultrasonic transducer array for shear wave elastography in deep tissues: a preliminary study. Res. Biomed. Eng. 36, 277–289 (2020). https://doi.org/10.1007/s42600-020-00068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42600-020-00068-6

Keywords

  • Shear wave elastography (SWE)
  • Acoustic radiation force (ARF)
  • Two-dimensional (2D) array
  • Ultrasonic transducer
  • Deep tissue