Azar L, Shi Y, Wooh SC. Beam focusing behavior of linear phased arrays. NDT and E Int. 2000;33(3):189–98.
Google Scholar
Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.
Google Scholar
Bota S, Sporea I, Sirli R, Popescu A, Danila M, Jurchis A, et al. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of acoustic radiation force impulse (ARFI) elastography - analysis of a cohort of 1031 subjects. Eur J Radiol. 2014;83(2):268–72.
Google Scholar
Bruno C, Minniti S, Bucci A, Mucelli RP. ARFI: from basic principles to clinical applications in diffuse chronic disease—a review. Insights Imaging. 2016;7(5):735–46.
Google Scholar
Cardoso FM, Santos DS, and Furuie SS. “Acoustic radiation force impulse in deep tissues using matricial array transducers.” In Proc. of the Brazilian Cong. on Biomed. Eng. Foz do Iguaçu, Brazil: SBEB;2016. pp. 1075–78
Chami L, Yue JL, Lucidarme O, Lefort M, and Pellot-Barakat C. “Feasibility of liver shear wave elastography with different transducers.” IEEE International Ultrasonics Symposium, IUS 2016-Novem; 2016. 1–4
Chen S, Urban MW, Pislaru C, Kinnick R, Zheng Y, Yao A, et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):55–62.
Google Scholar
Dewall RJ. Ultrasound Elastography: principles, techniques, and clinical applications. Crit Rev Biomed Eng. 2013;41(1):1–19.
Google Scholar
Doherty J, Trahey G, Nightingale K, Palmeri M. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(4):685–701.
Google Scholar
Ergün AS. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force. Ultrasonics. 2011;51(7):786–94.
Google Scholar
Firouzi K, Cox BT, Treeby BE, Saffari N. A first-order k -space model for elastic wave propagation in heterogeneous media. J Acoust Soc Am. 2012;132(3):1271–83.
Google Scholar
Frulio N, Trillaud H. Ultrasound Elastography in liver. Diagn Interv Imaging. 2013;94(5):515–34.
Google Scholar
Ganguli A, Gao RX, Liang K, Jundt J. Optimal ultrasonic array focusing in attenuative media. Ultrasonics. 2011;51(8):911–20.
Google Scholar
Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–95.
Google Scholar
Goldberg RL, Smith SW. Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(5):761–71.
Google Scholar
Hunt JW, Arditi M, Stuart Foster F. Ultrasound transducers for pulse-echo medical imaging. IEEE Trans Biomed Eng. 1983;BME-30(8):453–81.
Google Scholar
Kaminuma C, Tsushima Y, Matsumoto N, Kurabayashi T, Taketomi-Takahashi A, Endo K. Reliable measurement procedure of virtual touch tissue quantification with acoustic radiation force impulse imaging. J Ultrasound Med. 2011;30(6):745–51.
Google Scholar
Kino GS. Acoustic waves: devices, imaging, and analog signal processing. edited by Cliffs E. Bergen: Prentice-Hall;1987
Kinsler LE, Frey AR, Coppens AB, and Sanders JV. Fundamentals of acoustics. 4th ed. New York;2000
Konofagou E, Maleke C, Vappou J. Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring. Curr Med Imaging Rev. 2012;8(1):16–26.
Google Scholar
Konofagou E, Thierman J, Hynynen K. A focused ultrasound method for simultaneous diagnostic and therapeutic applications - a simulation study. Phys Med Biol. 2001;46(11):2967–84.
Google Scholar
Krimholtz R, Leedom DA, Matthaei GL. New equivalent circuits for elementary piezoelectric transducers. Electron Lett. 1970;6(13):398–9.
Google Scholar
Lee HY, Lee JH, Shin JH, Kim SY, Shin HJ, Park JS, et al. Shear wave elastography using ultrasound: effects of anisotropy and stretch stress on a tissue phantom and in vivo reactive lymph nodes in the neck. Ultrasonography. 2017;36(1):25–32.
Google Scholar
Lee JH, Choi SW. A parametric study of ultrasonic beam profiles for a linear phased array transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):644–50.
Google Scholar
Lizzi FL, Muratore R, Deng CX, Ketterling JA, Kaisar Alam S, Mikaelian S, et al. Radiation-force technique to monitor lesions during ultrasonic therapy. Ultrasound Med Biol. 2003;29(11):1593–605.
Google Scholar
Myers RP, Pomier-Layrargues G, Kirsch R, Pollett A, Duarte-Rojo A, Wong D, et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology. 2012;55(1):199–208.
Google Scholar
Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001;110(1):625–34.
Google Scholar
Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2012;7(4):328–39.
Google Scholar
de Oliveira TF. Estudo Do Processo de Corte de Cerâmicas Piezelétricas Com Discos Adiamantados Para a Fabricação de Piezocompósitos [Master’s Thesis]. Sao Paulo: University of Sao Paulo; 2007.
Google Scholar
Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods. Interface Focus. 2011;1(4):553–64.
Google Scholar
Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–58.
Google Scholar
Palmeri M, Sharma A, Bouchard R, Nightingale R, Nightingale K. A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;13(14–15):1133–45.
Google Scholar
Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2012;57:5359–60.
Google Scholar
Prieur F and Catheline S. “Simulation of shear wave elastography imaging using the toolbox ‘k-Wave.’” in Proc. Mtgs. Acoust. Acoustical Society of America;2016. Vol. 29
Prieur F, Sapozhnikov OA. Modeling of the acoustic radiation force in elastography. J Acoust Soc Am. 2017;142(2):947–61.
Google Scholar
Von Ramm OT, Smith SW. Beam steering with linear arrays. IEEE Trans Biomed Eng. 1983;BME-30(8):438–52.
Google Scholar
Rasmussen MF and Jensen JA. “3-D ultrasound imaging performance of a row-column addressed 2-D array transducer: a measurement study.” IEEE International Ultrasonics Symposium, IUS;2013. 1460–63.
Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography. 2017;36(3):185–97.
Google Scholar
Sadeghi S, Rothenberger S, Akbarian D, Daniel H. Effect of frequency and focal depth of push pulses on acoustic intensity, mechanical index, and shear wave amplitude for elastography imaging. SM J Biomed Eng. 2017;3(1):1–6.
Google Scholar
Santos D, Cardoso F, Furuie S. Two-Dimensional Ultrasound Transducer Array for Acoustic Radiation Force Impulse Imaging. In: In Procceedings of the 24th ABCM International Congress of Mechanical Engineering. Curitiba: ABCM; 2017.
Google Scholar
dos Santos DS. Shear wave elastography with two-dimensional ultrasound transducer [Master’s thesis]. Sao Paulo: University of Sao Paulo; 2018.
Google Scholar
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82.
Google Scholar
Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging : a new ultrasonic technology of medical diagnostic. Ultrasound Med Biol. 1998;24(9):1419–35.
Google Scholar
Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47.
Google Scholar
Sigrist RMS, Liau J, El Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.
Google Scholar
Treeby BE, Jaros J, Rohrbach D, Cox BT. Modelling elastic wave propagation using the K-wave MATLAB toolbox. IEEE Int Ultrason Symp. 2014;4.
Turnbull DH, Stuart Foster F. Beam steering with pulsed two-dimensional transducer arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(4):320–33.
Google Scholar
Turnbull DH, Stuart Foster F. Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39:464–75.
Google Scholar
Verweij MD, Treeby BE, van Dongen KWA, and Demi L. “Simulation of ultrasound fields.” In Comprehensive Biomedical Physics. Elsevier;2014. Pp. 465–500
W. Schmerr L. Fundamentals of ultrasonic phased arrays. In: Barber JR, Klarbring A, editors. in Solid Mechanics and Its Applications. Cham: Springer; 2015.
Google Scholar
Wang CZ, Zheng J, Huang ZP, Yang X, Song D, Zeng J, et al. Influence of measurement depth on the stiffness assessment ofhealthy liver with real-time shear wave Elastography. Ultrasound Med Biol. 2014;40(3):461–9.
Google Scholar
Wooh S-C, Shi Y. Optimum beam steering of linear phased arrays. Wave Motion. 1999;29:245–65.
Google Scholar
Zhao H, Song P, Urban MW, Kinnick RR, Yin M, Greenleaf JF, et al. Bias observed in time-of-flight shear wave speed measurements using radiation force of a focused ultrasound beam. Ultrasound Med Biol. 2011;37(11):1884–92.
Google Scholar
Zhou Q, Cha JH, Huang Y, Zhang R, Cao W, Kirk Shung K. Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):213–9.
Google Scholar
Zhou Q, Lam KH, Zheng H, Qiu W, Kirk Shung K. Piezoelectric single crystals for ultrasonic transducers in biomedical applications. Prog Mater Sci. 2014;66:87–111.
Google Scholar
Zhou S, Robert J-l, Fraser J, Shi Y, Xie H, Shamdasani V. Finite element modeling for shear wave elastography. IEEE Int Ultrason Symp. 2011;2011:2400–3.