Chen K, Shen J, Scalzo F. Skull stripping using confidence segmentation convolution neural network. Lect Notes Comput Sci. 2018. https://doi.org/10.1007/978-3-030-03801-4_2.
De Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A comparison of MR based segmentation methods for measuring brain atrophy progression. NeuroImage. 2011;54:760–8. https://doi.org/10.1016/j.neuroimage.2010.09.060.
Article
Google Scholar
Dey R, Hong Y. CompNet: complementary segmentation network for brain MRI extraction. Springer: International Conference on Medical Image Computing and Computer-Assisted Intervention; 2018.
Google Scholar
Duay V.; Bresson, X.; Castro J.S.; Pollo C.; Cuadra M.B.; Thiran JP. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):980-8. Ali.
Essadike A, Ouabida E, Bouzid A. Brain tumor segmentation with Vander Lugt correlator based active contour. Comput Methods Prog Biomed. 2018;160:103–17. https://doi.org/10.1016/j.cmpb.2018.04.004.
Article
Google Scholar
Fischl B. FreeSurfer. FreeSurfer Neuroimage. 2012;62:774–81. https://doi.org/10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
Article
Google Scholar
Franke K, Gaser C. Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s disease. GeroPsych. 2012. https://doi.org/10.1024/1662-9647/a000074.
Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., amp; Frackowiak, R. S. J. Spatial registration and normalization of images. Human Brain Mapping, 1995. https://doi.org/10.1002/hbm.460030303
Haralick RM, Shanmugam K, Dinstein I. Texture features for image classification. IEEE Trans Systems Man Cybem. 1973;SMC-3:610–21. https://doi.org/10.1109/TSMC.1973.4309314.
Article
Google Scholar
Iglesias JE, Cheng-Yi L, Thompson PM, Zhuowen T. Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods. IEEE Transactions on Medical Imaging. 2011;30:1617–34. https://doi.org/10.1109/tmi.2011.2138152.
Article
Google Scholar
Ikram MA, Vrooman HA, Vernooij MW, van der Lijn F, Hofman A, van der Lugt A, et al. Brain tissue volumes in the general elderly population. Neurobiol Aging. 2008;29:882–90. https://doi.org/10.1016/j.neurobiolaging.2006.12.012.
Article
Google Scholar
Kalavathi P, Prasath VBS. Methods on skull stripping of MRI head scan images—a review. J Digit Imaging. 2015;29:365–79. https://doi.org/10.1007/s10278-015-9847-8.
Article
Google Scholar
Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1998;1:321–31. https://doi.org/10.1007/bf00133570.
Article
Google Scholar
Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9. https://doi.org/10.1016/j.neuroimage.2016.01.024.
Article
Google Scholar
Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp. 2009;30:1310–27. https://doi.org/10.1002/hbm.20599.
Article
Google Scholar
LaMontagne PJ, Benzinger TLS, Morris JC, Keefe S, Hornbeck R, Xiong C, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2018. https://doi.org/10.1101/2019.12.13.19014902.
Peng SL, Chen CF, Liu HL, Lui CC, Huang YJ, Lee TH, et al. Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed. 2012;26:443–50. https://doi.org/10.1002/nbm.2882.
Article
Google Scholar
Price K. Anything you can do, I can do better (no you can’t). Computer Vision Graphics and Image Processing. 1998;36:387–91. https://doi.org/10.1016/0734-189X(86)90083-6.
Article
Google Scholar
Roy S, Maji P. An accurate and robust skull stripping method for 3-D magnetic resonance brain images. Magn Reson Imaging. 2018;54:46–57. https://doi.org/10.1016/j.mri.2018.07.014.
Article
Google Scholar
Roy S, Butman JA, Pham DL. Robust skull stripping using multiple MR image contrasts insensitive to pathology. NeuroImage. 2017;146:132–47. https://doi.org/10.1016/j.neuroimage.2016.11.017.
Article
Google Scholar
Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image tissue classification using a partial volume model. NeuroImage. 2001;13:856–76. https://doi.org/10.1006/nimg.2000.0730.
Article
Google Scholar
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55. https://doi.org/10.1002/hbm.10062.
Article
Google Scholar
Wang J, Kong J, Lu Y, Qi M, Zhang B. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput Med Imaging Graph. 2008;32:685–98. https://doi.org/10.1016/j.compmedimag.2008.08.004.
Article
Google Scholar
Zaidi H, Ruest T, Schoenahl F, & Montandon M.-L. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. NeuroImage, 2006. https://doi.org/10.1016/j.neuroimage.2006.05.031
Zhang W-L, Wang X-Z. Feature Extraction and Classification for Human Brain CT Images. 2007 International Conference on Machine Learning and Cybernetics. 2007. https://doi.org/10.1109/icmlc.2007.4370318.