Skip to main content
Log in

Reinforcing effect of oxidized multiwalled carbon nanotubes on swelling and mechanical properties of gum ghatti-cl-poly(NIPAm-co-AA) hydrogels

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

The objective of the present study was to synthesize Gg-cl-poly(NIPAm-co-AA)/-o-MWCNT (GNACNT) hydrogel via free radical copolymerization using the following ingredients: gum ghatti as biopolymer (GG), acrylic acid (AA) as a probe for synthetic monomer, ammonium persulphate as initiator, and methylene bis-acrylamide (MBA) as cross-linker. This hydrogel shows superior mechanical performance by incorporating filler such as oxidized multiwalled carbon nanotubes (-o-MWCNT) in varying quantities (0–50 mg) to produce polymer/inorganic composite hydrogels which has one of the most promising ways for improving the mechanical characteristics of hydrogels. In the linear viscoelastic region, the storage modulus (G′) was much higher than the loss modulus (G″) for all hydrogels across the entire frequency range. The persistent covalence crosslinking is responsible for the solid-like behaviour and elastic nature (G′ > G″). When additional -o-MWCNT was added, G′ was found to be increased. The -o-MWCNT’s interaction became stronger when the MWNT dispersion quality improved or their network connections, aspect ratio, or concentration rose, as shown by a greater storage modulus G, complex viscosity |η*|, and constant shear viscosity. Suspensions containing a combination of separated -o-MWCNT aggregates and small -o-MWCNT aggregates displayed G′ that was independent of frequency, indicating solid-like behaviour. As a result, these hydrogels may have potential uses in biological disciplines that are not limited by water capacity or mechanical qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References 

  1. T. W. and R. B. Zili Li, Miao Tang, Jingwen Dai, “Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels,” 2016, https://doi.org/10.1016/j.polymer.2016.01.025.This.

  2. F. Xu et al., “Hydrogels for tissue engineering: addressing key design needs toward clinical translation,” Front. Bioeng. Biotechnol 10(May) (2022). https://doi.org/10.3389/fbioe.2022.849831.

  3. S. Mantha et al., “Smart hydrogels in tissue engineering and regenerative medicine,” Materials (Basel)., 12(20) (2019). https://doi.org/10.3390/ma12203323.

  4. M. Ruggeri et al., “Clay-based hydrogels as drug delivery vehicles of curcumin nanocrystals for topical application,” Pharmaceutics 14(12) (2022). https://doi.org/10.3390/pharmaceutics14122836.

  5. P. N. Dave, P. M. Macwan, and B. Kamaliya, “Preparation and enhancing properties of pH-sensitive hydrogel in light of gum ghatti-cl-poly(acrylic acid)/ – o-MWCNT for sodium diclofenac drug release,” Macromolecular Chemistry and Physics 224(12) (2023). https://doi.org/10.1002/macp.202300038.

  6. A. Ehrenhofer, S. Binder, G. Gerlach, and T. Wallmersperger, “Multisensitive Swelling of hydrogels for sensor and actuator design,” Adv. Eng. Mater 22(7) (2020). https://doi.org/10.1002/adem.202000004.

  7. Franke, D., Gerlach, G.: Swelling studies of porous and nonporous semi-IPN hydrogels for sensor and actuator applications. Micromachines 11(4), 13–16 (2020). https://doi.org/10.3390/MI11040425

    Article  Google Scholar 

  8. Luo, K., Yang, Y., Shao, Z.: Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv. Funct. Mater. 26(6), 872–880 (2016). https://doi.org/10.1002/adfm.201503450

    Article  CAS  Google Scholar 

  9. Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291(9), 2031–2047 (2013). https://doi.org/10.1007/s00396-013-3021-y

    Article  CAS  Google Scholar 

  10. Tan, Y., Xu, S., Wu, R., Du, J., Sang, J., Wang, J.: A gradient Laponite-crosslinked nanocomposite hydrogel with anisotropic stress and thermo-response. Appl. Clay Sci. 148(February), 77–82 (2017). https://doi.org/10.1016/j.clay.2017.08.004

    Article  CAS  Google Scholar 

  11. Liu, X., et al.: A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. Soft Matter 16(36), 8394–8399 (2020). https://doi.org/10.1039/d0sm01132k

    Article  ADS  CAS  PubMed  Google Scholar 

  12. A. El-Refaey, Y. Ito, and M. Kawamoto, “Nanocomposite hydrogels containing few-layer graphene sheets prepared through noncovalent exfoliation show improved mechanical properties,”. Nanomaterials, 12 (18) (2022). https://doi.org/10.3390/nano12183129.

  13. Dave, P.N., Macwan, P.M., Kamaliya, B.: Synthesis and rheological investigations of gum-ghatti-cl-poly(NIPA- co -AA)-graphene oxide based hydrogels. Mater. Adv. (2023). https://doi.org/10.1039/d3ma00092c

    Article  Google Scholar 

  14. Bratovcic, A.: Nanocomposite hydrogels reinforced by carbon nanotubes. Int. J. Eng. Res. Appl. 10(5), 30–41 (2020). https://doi.org/10.9790/9622-1005043041

    Article  Google Scholar 

  15. ArtiVashist, M.N., Kaushik, A., Vashist, A., Sagar, V., AnujitGhosal, Y.K., Gupta, S.A.: Advances in carbon nanotubes - hydrogel hybrids in nanomedicine for therapeutics. Physiol. Behav 176(1), 139–148 (2017). https://doi.org/10.1002/adhm.201701213

    Article  CAS  Google Scholar 

  16. Mittal, H., Mishra, S.B., Mishra, A.K., Kaith, B.S., Jindal, R.: Flocculation characteristics and biodegradation studies of gum ghatti based hydrogels. Int. J. Biol. Macromol. 58, 37–46 (2013). https://doi.org/10.1016/j.ijbiomac.2013.03.045

    Article  CAS  PubMed  Google Scholar 

  17. Toto, E., Santonicola, M.G., Ciarleglio, G.: “Conductive and thermo-responsive composite hydrogels with poly(N-isopropylacrylamide) and carbon nanotubes fabricated by two-step photopolymerization”. Polymers.  15(4), 1022 (2023).

  18. Jyoti, J., Singh, B.P., Rajput, S., Singh, V.N., Dhakate, S.R.: Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite. J. Mater. Sci. 51(5), 2643–2652 (2016). https://doi.org/10.1007/s10853-015-9578-8

    Article  ADS  CAS  Google Scholar 

  19. Kanagaraj, S., Guedes, R.M., Oliveira, M.S.A., Simões, J.A.O.: Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites. J. Nanosci. Nanotechnol. 8(8), 4008–4012 (2008). https://doi.org/10.1166/jnn.2008.AN53

    Article  CAS  PubMed  Google Scholar 

  20. Shen, Z., Roding, M., Kroger, M., Li, Y.: Carbon nanotube length governs the viscoelasticity and permeability of buckypaper. Polymers (Basel) 9(4), 1–18 (2017). https://doi.org/10.3390/polym9040115

    Article  CAS  Google Scholar 

  21. Fan, Z., Advani, S.G.: Rheology of multiwall carbon nanotube suspensions. J. Rheol (N.Y.N.Y) 51(4), 585–604 (2007). https://doi.org/10.1122/1.2736424

    Article  ADS  CAS  Google Scholar 

  22. Sathaye, S., et al.: Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface? Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 7(1), 34–68 (2015). https://doi.org/10.1002/wnan.1299

    Article  CAS  PubMed  Google Scholar 

  23. Yan, C., Pochan, D.J.: Rheological properties of peptide-based hydrogels for biomedical and other applications. Bone 39(9), 1–7 (2010). https://doi.org/10.1039/b919449p

    Article  CAS  Google Scholar 

  24. Hao, Z.Q., Chen, Z.J., Chang, M.C., Meng, J.L., Liu, J.Y., Feng, C.P.: Rheological properties and gel characteristics of polysaccharides from fruit-bodies of sparassis crispa. Int. J. Food Prop. 21(1), 2283–2295 (2018). https://doi.org/10.1080/10942912.2018.1510838

    Article  CAS  Google Scholar 

  25. Zuidema, J.M., Rivet, C.J., Gilbert, R.J., Morrison, F.A.: A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res.- Part B Appl. Biomater. 102(5), 1063–1073 (2014). https://doi.org/10.1002/jbm.b.33088

    Article  CAS  Google Scholar 

  26. Tafete, G.A., Thothadri, G., Abera, M.K.: A review on carbon nanotube-based composites for electrocatalyst applications. Fullerenes Nanotub. Carbon Nanostructures 30(11), 1075–1083 (2022). https://doi.org/10.1080/1536383X.2022.2028278

    Article  ADS  CAS  Google Scholar 

  27. Seman, R.N.A.R., Azam, M.A., Mohamad, A.A.: Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 75(July), 644–659 (2017). https://doi.org/10.1016/j.rser.2016.10.078

    Article  CAS  Google Scholar 

  28. Tong, X., Zheng, J., Lu, Y., Zhang, Z., Cheng, H.: Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater. Lett. 61(8), 1704–1706 (2007). https://doi.org/10.1016/j.matlet.2006.07.115

    Article  CAS  Google Scholar 

  29. Bhattacharyya, S., Guillot, S., Dabboue, H., Tranchant, J.F., Salvetat, J.P.: Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromol 9(2), 505–509 (2008). https://doi.org/10.1021/bm7009976

    Article  CAS  Google Scholar 

  30. Liu, H., Liu, M., Zhang, L., Ma, L., Chen, J., Wang, Y.: Dual-stimuli sensitive composites based on multi-walled carbon nanotubes and poly(N, N-diethylacrylamide-co-acrylic acid) hydrogels. React. Funct. Polym. 70(5), 294–300 (2010). https://doi.org/10.1016/j.reactfunctpolym.2010.02.002

    Article  CAS  Google Scholar 

  31. Barkoula, N.M., Alcock, B., Cabrera, N.O., Peijs, T.: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym. Polym. Compos. 16(2), 101–113 (2008). (10.1002/pc)

    CAS  Google Scholar 

  32. R. B. Zili Li, Miao Tang, Jingwen Dai, Taisheng Wang, “Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and,” JPOL, (2016). https://doi.org/10.1016/j.polymer.2016.01.025.

  33. Kamaliya, B., Dave, P.N., Macwan, P.M.: Oxidized multiwalled carbon nanotube reinforced rheological examination on gum ghatti-cl-poly(acrylic acid) hydrogels. J. Appl. Polym. Sci. 139(43), 1–16 (2022). https://doi.org/10.1002/app.52888

    Article  CAS  Google Scholar 

  34. A. Verma, P. Kumar, V. Rastogi, and P. Mittal, “Preparation and evaluation of polymeric beads composed of Chitosan–Gellan Gum–Gum Ghatti/-Gum Karaya polyelectrolyte complexes as polymeric carrier for enteric sustained delivery of Diclofenac sodium,” Futur. J. Pharm. Sci. 7(1) (2021). https://doi.org/10.1186/s43094-021-00343-y.

  35. Del Giudice, F., Shen, A.Q.: Shear rheology of graphene oxide dispersions. Curr. Opin. Chem. Eng. 16, 23–30 (2017). https://doi.org/10.1016/j.coche.2017.04.003

    Article  Google Scholar 

  36. A. Shukla, A. P. Singh, and P. Maiti, “Injectable hydrogels of newly designed brush biopolymers as sustained drug-delivery vehicle for melanoma treatment,” Signal Transduct. Target. Ther 6(1) (2021). https://doi.org/10.1038/s41392-020-00431-0.

  37. Chang, Q., et al.: Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. J. Mater. Chem. A 7(42), 24626–24640 (2019). https://doi.org/10.1039/c9ta06233e

    Article  CAS  Google Scholar 

  38. Dave, P.N., Macwan, P.M., Kamaliya, B.: “Synthesis and characterization of biodegradable gum ghatti- cl - poly ( AA- co -NIPAm )/ GO based hydrogel for metformin and sodium diclofenac combined drug delivery system”, Colloids Surfaces A Physicochem. Eng. Asp. J. 673(May), 131815–131826 (2023). https://doi.org/10.1016/j.colsurfa.2023.131815

    Article  CAS  Google Scholar 

  39. I. A. Podaru et al., “Poly(N-vinylpyrrolidone)–Laponite XLG nanocomposite hydrogels: characterization, properties and comparison with divinyl monomer-crosslinked hydrogels,” Polymers (Basel) 14919) (2022). https://doi.org/10.3390/polym14194216.

  40. Abbastabar, B., Azizi, M.H., Adnani, A., Abbasi, S.: Determining and modeling rheological characteristics of quince seed gum. Food Hydrocoll. 43, 259–264 (2015). https://doi.org/10.1016/j.foodhyd.2014.05.026

    Article  CAS  Google Scholar 

  41. Cross, M.M.: Rheology of non-newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20, 417–437 (1965).

  42. Benchabane, A., Bekkour, K.: Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym. Sci. 286(10), 1173–1180 (2008). https://doi.org/10.1007/s00396-008-1882-2

    Article  CAS  Google Scholar 

  43. Dunstan, D.E., Hill, E.K., Wei, Y.: Direct measurement of polymer segment orientation and distortion in shear: semi-dilute solution behavior. Polymer (Guildf) 45(4), 1261–1266 (2004). https://doi.org/10.1016/j.polymer.2003.12.018

    Article  CAS  Google Scholar 

  44. Clasen, C., Kulicke, W.M.: Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog. Polym. Sci. 26(9), 1839–1919 (2001). https://doi.org/10.1016/S0079-6700(01)00024-7

    Article  CAS  Google Scholar 

  45. Álvarez, E., Cancela, M.A., Delgado-Bastidas, N., MacEiras, R.: Rheological characterization of commercial baby fruit purees. Int. J. Food Prop. 11(2), 321–329 (2008). https://doi.org/10.1080/10942910701359424

    Article  CAS  Google Scholar 

  46. Ali, L., Tanzil, S., Rehman, U., Khan, M.: Synthesis of graphene oxide doped thixotropic behavior. Polym. Bull. 0123456789, 3921–3935 (2019)

    Google Scholar 

  47. Baloochestanzadeh, S., Hassanajili, S., Escrochi, M.: Rheological properties and swelling behavior of nanocomposite preformed particle gels based on starch-graft-polyacrylamide loaded with nanosilica. Rheol. Acta 60(10), 571–585 (2021). https://doi.org/10.1007/s00397-021-01287-z

    Article  CAS  Google Scholar 

  48. Kotsilkova, R., Tabakova, S., Ivanova, R.: Effect of graphene nanoplatelets and multiwalled carbon nanotubes on the viscous and viscoelastic properties and printability of polylactide nanocomposites. Mech. Time-Dependent Mater. 26(3), 611–632 (2022). https://doi.org/10.1007/s11043-021-09503-2

    Article  ADS  CAS  Google Scholar 

  49. Li, G., Zhang, H., Fortin, D., Xia, H., Zhao, Y.: Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42), 11709–11716 (2015). https://doi.org/10.1021/acs.langmuir.5b03474

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116(5), 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  51. Guan, Y., et al.: Preparation and rheological investigation of tough PAAm hydrogel by adding branched polyethyleneimine. J. Appl. Polym. Sci. 137(14), 1–7 (2020). https://doi.org/10.1002/app.48541

    Article  CAS  Google Scholar 

  52. Yetgin, S.H.: Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 8(5), 4725–4735 (2019). https://doi.org/10.1016/j.jmrt.2019.08.018

    Article  CAS  Google Scholar 

  53. Silva, S.S., et al.: The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chem. 14(5), 1463–1470 (2012). https://doi.org/10.1039/c2gc16535j

    Article  CAS  Google Scholar 

  54. Zhang, X., Pan, Z.: Rheological behavior of regenerated silk fibroin/polyvinyl alcohol blended solutions in steady and dynamic state and the effect of temperature. J. Mater. Sci. 55(31), 15350–15363 (2020). https://doi.org/10.1007/s10853-020-05086-4

    Article  ADS  CAS  Google Scholar 

  55. Razi, S.M., Motamedzadegan, A., Shahidi, S.A., Rashidinejad, A.: Steady and dynamic shear rheology as a toolfor evaluation of the interactions between egg white albumin and basil seed gum. Rheol. Acta 59(5), 317–331 (2020). https://doi.org/10.1007/s00397-020-01198-5

    Article  CAS  Google Scholar 

  56. G. Stojkov, Z. Niyazov, F. Picchioni, and R. K. Bose, “Relationship between structure and rheology of hydrogels for various applications,” Gels. 7(4) (2021). https://doi.org/10.3390/gels7040255.

  57. M. A. Marcos et al., “Influence of molecular mass of PEG on rheological behaviour of MWCNT-based nanofluids for thermal energy storage,” J. Mol. Liq. 318 (2020). https://doi.org/10.1016/j.molliq.2020.113965.

  58. Moniruzzaman, M., Sahin, A., Winey, K.I.: Improved mechanical strength and electrical conductivity of organogels containing carbon nanotubes. Carbon N. Y. 47(3), 645–650 (2009). https://doi.org/10.1016/j.carbon.2008.10.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors BK is thankful for the Shodh fellowship provided by the Government of Gujarat and to the Department of Chemistry for the laboratory facility and Instrumental facilities for various analyses at Sardar Patel University, V. V. Nagar and CISST Department for characterization of the samples.

Author information

Authors and Affiliations

Authors

Contributions

Pragnesh N Dave: conceptualization; project administration; resources; software; supervision; validation; visualization; writing—review and editing.

Pradip M. Macwan: visualization; roles/writing—original draft.

Bhagvan Kamaliya: data curation; formal analysis; investigation; project.

Corresponding author

Correspondence to Pragnesh N. Dave.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P.N., Macwan, P.M. & Kamaliya, B. Reinforcing effect of oxidized multiwalled carbon nanotubes on swelling and mechanical properties of gum ghatti-cl-poly(NIPAm-co-AA) hydrogels. Mech Soft Mater 6, 2 (2024). https://doi.org/10.1007/s42558-024-00057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-024-00057-0

Keywords

Navigation