Skip to main content
Log in

Growth-induced instabilities for transversely isotropic hyperelastic materials

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

This work focuses on planar growth-induced instabilities in three-dimensional bilayer structures, i.e., thick stiff film on a compliant substrate or a confined tissue. Growth-induced instabilities are examined in three-dimension for a different range of fiber stiffness with a five-field Hu-Washizu type mixed variational formulation as the first time in the literature to our best knowledge. The quasi-incompressible and quasi-inextensible limits of transversely isotropic materials were considered. A numerical example was solved by implementing the T2P0F0 element on an automated differential equation solver platform, FEniCS. There was proposed a 2D modelling procedure based on a long but thin bilayer plate for the determination of exact wavelengths which plays key role in the periodic boundary condition in 3D plate. It was shown that both the wavelength and critical growth parameter g decrease by increasing the fiber stiffness for the first instability, which is obtained along the stiff fiber direction. The effect of the fiber stiffness is minor on the secondary buckling, which was observed perpendicular to the fiber direction. For a range of fiber stiffnesses, bifurcation points of instabilities were also determined by monitoring displacements and energies. The energy contributions of layers with different ranges of fiber stiffnesses were examined. It is concluded that the energy release mechanism at the initiation of the primary buckling is mainly due to isotropic and anisotropic contributions of the stiff film layer. For high fiber stiffnesses, the effect of the anisotropic energy on the first buckling becomes more dominant over other types. However, in the secondary instability, the isotropic energy of the film layer becomes the dominant one. Numerical outcomes of this study will help to understand the fiber stiffness effect on the buckling and post-buckling behavior of bilayer systems and fiber-reinforced soft biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All calculated data supporting the findings of this study are available within the paper.

References

  1. Mora, T., Boudaoud, A.: Buckling of swelling gels. Eur. Phys. J. E: Soft matter and biological physics, EDP Sciences: EPJ. 20:pp.119 (2006)

  2. Khang, D., Rogers, J.A., Lee, H.H.: Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Func. Mat. 10, 1526–1536 (2009)

    Article  Google Scholar 

  3. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  4. Li, B., Jia, F., Cao, Y., Feng, X., Gao, H.: Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Letter. 106, 2–5 (2011)

    Article  Google Scholar 

  5. Eskandari, M., Pfaller, M.R., Kuhl, E.: On the role of mechanics in chronic lung disease. Mater. 6, 5639–5658 (2013)

    Article  Google Scholar 

  6. Budday, S., Steinmann, P., Kuhl, E.: The role of mechanics during brain development. J. Mech. Phys. Solid. 72, 75–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ulerich, J., Göktepe, S., Kuhl, E.: Dilation and hypertrophy: a cell-based continuum mechanics approach towards ventricular growth and remodeling. IUTAM Bookseries 16, 237–244 (2010)

    Article  Google Scholar 

  8. Göktepe, S., Abilez, O.J., Kuhl, E.: A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solid. 58, 1661–1680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Göktepe, S., Abilez, O.J., Parker, K.K., Kuhl, E.A.: Multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Bio. 265, 433–442 (2010)

    Article  MATH  Google Scholar 

  10. Rausch, M.K., Dam, A., Göktepe, S., Abilez, O.J., Kuhl, E.: Computational modeling of growth: Systemic and pulmonary hypertension in the heart. Biomech. Model. Mechano. 10, 799–811 (2011)

    Article  Google Scholar 

  11. Genzer, J., Groenewold, J.: Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter. 2, 310–323 (2006)

    Article  Google Scholar 

  12. Tepole, A.B., Ploch, C.J., Wong, J., Gosain, A.K., Kuhl, E.: Growing skin: a computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solid. 59, 2177–2190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Taber, L.A.: Growing skin: biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Revi. 48, 487–545 (1995)

    Article  Google Scholar 

  14. Hariton, I., deBotton, G., Gasser, T.C., Holzapfel, G.A.: Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model. Mechano. 6, 163–175 (2007)

    Article  MATH  Google Scholar 

  15. Demirkoparan, H., Pence, T.J.: The effect of fiber recruitment on the swelling of a pressurized anisotropic non-linearly elastic tube. Int. J. Non-Lin. Mech. 42, 258–270 (2007)

    Article  MATH  Google Scholar 

  16. Volokh, K.Y.: Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening. J. Biomech. 41, 447–453 (2008)

    Article  Google Scholar 

  17. Sáez, P., Peña, E., Martínez, M.A., Kuhl, E.: Computational modeling of hypertensive growth in the human carotid artery. Comput. Mech. 53, 1183–1196 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solid. Struct. 39, 4627–4664 (2002)

    Article  MATH  Google Scholar 

  19. Huang, Z.Y., Hong, W., Suo, Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solid. 53, 2101–2118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brau, F., Vandeparre, H., Sabbah, A., Poulard, C., Boudaoud, A., Damman, P.: Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nature Phys. 7, 56–60 (2011)

    Article  Google Scholar 

  21. Cai, S., Breid, D., Crosby, A.J., Suo, Z., Hutchinson, J.W.: Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solid. 59, 1094–1114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia, F., Amar, M.B.: Theoretical analysis of growth or swelling wrinkles on constrained soft slabs. Soft Matter. 9, 8216–8226 (2013)

    Article  Google Scholar 

  23. Dervaux, J., Ciarletta, P., Amar, M.B.: Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Foppl von Karman limit. J. Mech. Phys. Solid. 57:458–471 (20099)

  24. Javili, A., Steinmann, P., Kuhl, E.: A novel strategy to identify the critical conditions for growth-induced instabilities. J. Mech. Behavior Biomed. Mater. 29, 20–32 (2014)

    Article  Google Scholar 

  25. Ionov, L.: Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23, 4555–4570 (2013)

    Article  Google Scholar 

  26. Liu, Y., Zhang, H., Zheng, Y.: A multiplicative finite element algorithm for the inhomogeneous swelling of polymeric gels. Comput. Methods Appl. Mech. Eng. 283, 517–550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Zhang, H., Zhang, J., Zheng, Y.: Constitutive modeling for polymer hydrogels: a new perspective and applications to anisotropic hydrogels in free swelling. Eur. J. Mech., A/Solid. 54, 171–186 (2015)

  28. Nardinocchi, P., Pezzulla, M., Teresi, L.: Anisotropic swelling of thin gel sheets. Soft Matter 11, 1492–1499 (2015)

    Article  Google Scholar 

  29. Nardinocchi, P., Pezulla, M., Teresi, L.: Steady and transient analysis of anisotropic swelling in fibered gels. J. Appl. Phys. 118, 244904 (2015)

    Article  Google Scholar 

  30. Liu, Y., Zhang, H., Wang, J., Zheng, Y.: Anisotropic swelling in fiber-reinforced hydrogels: an incremental finite element method and its applications in design of bilayer structures. Int. J. Appl. Mech. 8, 1640003 (2016)

    Article  Google Scholar 

  31. Wang, J., Qiu, Y., Zhang, H., Zheng, Y., Ye, H.: A solid-shell finite element method for the anisotropic swelling of hydrogels with reinforced fibers. Eur. J. Mech., A/Solids. 86, 104197 (2021)

  32. Liu, W., Rahn, C.R.: Fiber-reinforced membrane models of McKibben actuators. J. Appl. Mech. Trans. ASME. 70, 853–859 (2003)

    Article  MATH  Google Scholar 

  33. Fang, Y., Pence, T.J., Tan, X.: Fiber-directed conjugated-polymer torsional actuator: nonlinear elasticity modeling and experimental validation. IEEE/ASME transactions on mechatronics. 16, 656–664 (2011)

    Article  Google Scholar 

  34. Dadgar-Rad, F., Dorostkar, A.N., Hossain, M.: Growth of shell-like soft biological tissues under mechanical loading. Int. J. Non-Linear Mech. in press. (2023)

  35. Kuhl, E., Menzel, A., Steinmann, P.: Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches. Comput. Mech. 32, 71–88 (2003)

  36. Li, B., Cao, Y.-P., Feng, X.-Q., Gao, H.: Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter. 8, 5728–5745 (2012)

    Article  Google Scholar 

  37. Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S.C., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E., Olberding, J.E., Taber, L.A., Garikipati, K.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids. 59, 863–883 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Comm. 42, 1–14 (2012)

    Article  Google Scholar 

  39. Kuhl, E.: Growing matter: a review of growth in living systems. J. Mech. Behavior Biomed. Mater. 29, 529–543 (2014)

    Article  Google Scholar 

  40. Goriely, A.: Five ways to model active processes in elastic solids: active forces, active stresses, active strains, active fibers, and active metrics. Mech. Res. Comm. 93, 75–79 (2018)

    Article  Google Scholar 

  41. Yang, S., Khare, K., Lin, P.-C.: Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20, 2550–2564 (2010)

    Article  Google Scholar 

  42. Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids. 56, 2444–2458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Javili, A., Dortdivanlioglu, B., Kuhl, E., Linder, C.: Computational aspects of growth-induced instabilities through eigenvalue analysis. Comput. Mech. 56, 405–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dortdivanlioglu, B., Javili, A., Linder, C.: Computational aspects of morphological instabilities using isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 261–279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Audoly, B:. Buckling of a stiff film bound to a compliant substrate (part I). Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids. 56, 2401–2421 (2008)

  46. Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—part II: a global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids. 56, 2422–2443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Alawiye, H., Kuhl, E., Goriely, A.: Revisiting the wrinkling of elastic bilayers I: linear analysis. Phil. Trans. R. Soc. A. Math. Phys. Eng. Sci. 377, 20180076 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ilseng, A., Prot, V., Skallerud, B.H., Stokke, B.T.: Buckling initiation in layered hydrogels during transient swelling. J. Mech. Phys. Solids. 128, 219–238 (2019)

    Article  MathSciNet  Google Scholar 

  49. Dortdivanlioglu, B., Linder, C.: Diffusion-driven swelling-induced instabilities of hydrogels. J. Mech. Phys. Solids. 125, 38–52 (2019)

    Article  MathSciNet  Google Scholar 

  50. Kadapa, C., Li, Z., Hossain, M., Wang, J.: On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. J. Mech. Phys. Solids. 148, 104289 (2021)

    Article  MathSciNet  Google Scholar 

  51. Rachev, A., Stergiopulos, N., Mesiter, J.-J.: Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J. Biomech. 29, 635–642 (1996)

    Article  Google Scholar 

  52. Taber, L.A.: A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120, 348–354 (1998)

    Article  Google Scholar 

  53. Ciarletta, P., Amar, M.B.: Pattern formation in fiber-reinforced tubular tissues: folding and segmentation during epithelial growth. J. Mech. Phys. Solids. 60, 525–537 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stewart, P.S., Waters, S.L., Sayed, T.E., Vella, D., Goriely, A.: Wrinkling, creasing, and folding in fiber-reinforced soft tissues. Extreme Mech. Lett. 8, 22–29 (2016)

    Article  Google Scholar 

  55. Agoras, M., Lopez-Pamies, O., Castañeda, P.P.: Onset of macroscopic instabilities in fiber-reinforced elastomers at finite strain. J. Mech. Phys. Solids. 57, 1828–1850 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Michel, J.C., Lopez-Pamies, O., Castañeda, P.P., Triantafyllidis, N.: Microscopic and macroscopic instabilities in finitely strained fiber-reinforced elastomers. J. Mech. Phys. Solids. 11, 1776–1803 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Slesarenko, V., Rudykh, S.: Microscopic and macroscopic instabilities in hyperelastic fiber composites. J. Mech. Phys. Solids. 99, 471–482 (2017)

    Article  MathSciNet  Google Scholar 

  58. Topol, H., Demirkoparan, H.: Uniaxial load analysis under stretch-dependent fiber remodeling applicable to collagenous tissue. J. Eng. Math. 95, 325–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lanir, Y.: Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fiber. Biomech. Model. Mechano. 14, 245–266 (2015)

    Article  Google Scholar 

  60. Gou, K., Pence, T.J.: Hyperelastic modeling of swelling in fibrous soft tissue with application to tracheal angioedema. J. Math. Biol. 72, 499–526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gou, K., Pence, T.J.: Computational modeling of tracheal angioedema due to swelling of the submucous tissue layer. Int. J. Numer. Methods Biomed. Eng. 33, (10) (2017)

  62. Gou, K., Fok, P.-W., Fu, Y.: Nonlinear tubular organ modeling and analysis for tracheal angioedema by swelling-morphoelasticity. J. Eng. Math. 112, 95–117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Dal, H.: A quasi-incompressible and quasi-inextensible element formulation for transversely isotropic materials. Int. J. Numer. Methods Eng. 117, 118–140 (2018)

    Article  MathSciNet  Google Scholar 

  64. Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Compu. Methods Appl. Mech. Eng. 281, 220–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zdunek, A., Rachowicz, W., Eriksson, T.: A five-field finite element formulation for nearly inextensible and nearly incompressible finite hyperelasticity. Comput. Math. Appl. 72, 25–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Logg, A., Mardal, K.-A., Wells, G.N.: Automated solution of differential equations by the finite element method. Lect. Notes Comput. Sci. Eng. 84, 1–736 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Pian, T.H.H., Chen, D.P.: Alternative ways for formulation of hybrid stress elements. Int. J. Numer. Methods Eng. 18, 1679–1684 (1982)

    Article  MATH  Google Scholar 

  68. Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)

    Article  MATH  Google Scholar 

  69. Nagtegaal, J.C., Parks, D.M., Rice, J.R.: On numerically accurate finite element solutions in the fully plastic range. Comput. Methods Appl. Mech. Eng. 4, 153–177 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  70. Simó, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity 51, 177–208 (1985)

    Google Scholar 

  71. Simó J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

  72. Miehe, C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity 37, 1981–2004 (1994)

    Google Scholar 

  73. Dal, H., Kaliske, M.: Bergström-boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the fe method. Comput. Mech. 44, 809–823 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kadapa, C., Hossain, M.: A linearized consistent mixed displacement- pressure formulation for hyperelasticity. Mechanics of advanced materials and structures ISSN 29(2), 267–284 (2022)

    Article  Google Scholar 

  75. Li, Z., Kadapa, C., Hossain, M., Wang, J.: A numerical framework for the simulation of coupled electromechanical growth. Comput. Methods Appl. Mech. Eng. 414, 116128 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  76. Li, Z., Wang, Q., Du, P., Kadapa, C., Hossain, M., Wang, J.: Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates. Int. J. Eng. Sci. 170, 103594 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  77. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  78. Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the ska-element simplified kinematics for anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Wriggers, P., Schröder, J., Auricchio, F.: Finite element formulations for large strain anisotropic material with inextensible fibers. Adv. Model. Simul. Eng. Sci. 3, 1–18 (2016)

    Article  Google Scholar 

  80. Gültekin, O., Rodoplu, B., Dal, H.: A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues. Biomech. Model. Mechano. 19, 2357–2373 (2020)

    Article  Google Scholar 

  81. Raush, K.M., Kuhl, E.: On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids. 63, 128–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  82. Marsdenm, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs, New Jersey (1983)

    Google Scholar 

  83. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  84. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elastic. 49, 1–30 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elastic. 62, 119–144 (2001)

    MathSciNet  MATH  Google Scholar 

  86. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elastic. 62, 145–170 (2001)

  87. Merodio, J., Saccomandi, G., Sgura, I.: The rectilinear shear of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 42, 342–354 (2007)

    Article  Google Scholar 

  88. Baek, S., Pence, T.J.: Emergence and disappearance of load induced fiber kinking surfaces in transversely isotropic hyperelastic materials. Z. Angew. Math. Phys. 61, 745–772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. El Hamdaoui, M., Merodio, J., Ogden, R.W.: Two-phase piecewise homogeneous plane deformations of a fibre-reinforced neo-Hookean material with application to fibre kinking and splitting. J. Mech. Phys. Solids. 143, 104091 (2020)

    Article  MathSciNet  Google Scholar 

  90. Genet, M., Rausch, M.K., Lee, L.C., Choy, S., Zhao, X., Kassab, G.S., Kozerke, S., Guccione, J.M., Kuhl, E.: Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48, 2080–2089 (2015)

    Article  Google Scholar 

  91. Dadgar-Rad, F., Dorostkar, A.M., Hossain, M.: Growth of shell-like soft biological tissues under mechanical loading. Int. J. Non-Linear Mech. 156, 104505 (2023)

    Article  Google Scholar 

  92. Li, Z., Wang, J., Hossain, M., Kadapa, C.: A theoretical scheme on shape-programming of thin hyperelastic shells through differential growth. Int. J. Solids Struct. 265–266, 112128 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüsnü Dal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, C., Gürses, E. & Dal, H. Growth-induced instabilities for transversely isotropic hyperelastic materials. Mech Soft Mater 5, 7 (2023). https://doi.org/10.1007/s42558-023-00055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-023-00055-8

Keywords

Navigation