Skip to main content
Log in

Investigating physical behavior of polyacrylamide/polyacrylic acid interpenetrating polymer networks through atomistic molecular dynamics simulations

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

A new comprehensive simulation model at atomistic level is proposed to investigate the miscibility and predict the glass transition temperature (Tg) and mechanical properties of polyacrylamide/polyacrylic acid (PAAm/PAA) weakly interpenetrating polymer networks (IPN). Five simulation models with different composition ratios are created and simulated by means of molecular dynamics (MD) simulation. The influence of the monomer nature on the formation of the IPN is examined by the reproduction of swelling of polymer networks in monomer solution. The swelling results allow us to determine that even with low cross-linking ratios, the resulting IPN will be homogeneous if the PAAm is firstly synthesized. The values of the Tg of the different samples are also determined and strain/stress behavior curves are also predicted. All the systems present a single phase temperature and predicted Tg values are in good agreement with experimental values. The strain/stress curves indicate that incorporating PAAm in the systems improves their ductility, but reduces their hardening; while, integrating PAA gives this latter the required hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Runt, J., & Huang, J. (2002). Polymer blends and copolymers. Applications To Polymers And Plastics, 273-294. https://doi.org/10.1016/s1573-4374(02)80011-5

  2. Gert, R. (2007). The Physics of polymers. Strobl.

  3. Roland. (2013). Interpenetrating polymer networks (IPN): structure and mechanical behavior. In: Encyclopedia of Polymeric Nanomaterials. CM, 1–9.

  4. Sperling, L.H., Hu, R.: Interpenetrating polymer networks. Polymer Blends Handbook 677(724), 10–1007 (2014)

    Google Scholar 

  5. Dragan, E.S.: Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243, 572–590 (2014). https://doi.org/10.1016/j.cej.2014.01.065

    Article  Google Scholar 

  6. Zeggai, N., Dali Youcef, B., Dubois, F.: Analysis of dynamic mechanical properties of photochemically crosslinked poly(isobornylacrylate-co-isobutylacrylate) applying WLF and Havriliak-Negami models. Polym Test 72, 432–438 (2018). https://doi.org/10.1016/j.polymertesting.2018.10.038

    Article  Google Scholar 

  7. Krause, A.T., Zschoche, S., Rohn, M.: Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications. Soft Matter 12, 5529–5536 (2016). https://doi.org/10.1039/C6SM00720A

    Article  Google Scholar 

  8. Haq, M.A., Su, Y., Wang, D.: Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70, 842–855 (2017). https://doi.org/10.1016/j.msec.2016.09.081

    Article  Google Scholar 

  9. Sampath, U.G.T.M., Ching, Y.C., Chuah, C.H.: Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24, 2215–2228 (2017). https://doi.org/10.1007/s10570-017-1251-8

    Article  Google Scholar 

  10. Bai, H., Li, Z., Zhang, S., Wang, W., Dong, W.: Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohyd. Polym. 200, 468–476 (2018). https://doi.org/10.1016/j.carbpol.2018.08.041

    Article  Google Scholar 

  11. Rm, A. E.-E., Ms, F., Ka, E., & Ao, E. (2020). Interpenetrating polymer network (IPN) nanoparticles for drug delivery applications. In: Interpenetrating Polymer Network: Biomedical Applications. Springer.

  12. S, M. H., W, Y., & Q, P. (2008). Interpenetrating polymer networks as high performance dielectric elastomers. In: Dielectric Elastomers as Electromechanical Transducers. Elsevier.

  13. Bakarich, S.E., Pidcock, G.C., Balding, P.: Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8, 9985 (2012). https://doi.org/10.1039/c2sm26745d

    Article  Google Scholar 

  14. Karak, N. (2012). Fundamentals of polymers. In: Vegetable Oil-Based Polymers. Elsevier.

  15. Wray, W., Boulikas, T., Wray, V.P., Hancock, R.: Silver staining of proteins in polyacrylamide gels. Anal Biochem 118, 197–203 (1981). https://doi.org/10.1016/0003-2697

    Article  Google Scholar 

  16. Huang, S.H., Liao, H.H., Chen, D.H.: Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens Bioelectron 25, 2351–2355 (2010). https://doi.org/10.1016/j.bios.2010.03.028

    Article  Google Scholar 

  17. Yang, Z.L., Gao, B.Y., Li, C.X.: Synthesis and characterization of hydrophobically associating cationic polyacrylamide. Chem Eng J 161, 27–33 (2010). https://doi.org/10.1016/j.cej.2010.04.015

    Article  Google Scholar 

  18. Chong, J., Xun, S., Zheng, H.: A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J Power Sources 196, 7707–7714 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.043

    Article  Google Scholar 

  19. Gulyuz, U., Okay, O.: Self-healing polyacrylic acid hydrogels. Soft Matter 9, 10287 (2013). https://doi.org/10.1039/c3sm52015c

    Article  Google Scholar 

  20. Bildyukevich, A., Hliavitskaya, T., Lipnizki, F., & Rudolph, G. (2020). Effect of molecular weight of polyacrylic acid (PAA) on polyethersulfone membrane structure and performance. Lup.lub.lu.se

  21. Arndt, C., Koristka, S., Feldmann, A., & Bachmann, M. (2018). Native Polyacrylamide Gels. Methods In Molecular Biology, 87-91. https://doi.org/10.1007/978-1-4939-8793-1_8

  22. Ni, T., Huang, G.S., Zheng, J.: Research on the crosslinking mechanism of polyacrylamide/resol using molecular simulation and X-ray photoelectron spectroscopy. Polym J 42, 357–362 (2010). https://doi.org/10.1038/pj.2010.10

    Article  Google Scholar 

  23. A, B., & A, G. (2003). Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr Polym, 53, 271-279. https://doi.org/10.1016/S0144-8617

  24. Jang, S., Goddard, W., Kalani, M.: Mechanical and transport properties of the poly(ethylene oxide)−poly(acrylic acid) double network hydrogel from molecular dynamic simulations. J. Phys. Chem. B 111(7), 1729–1737 (2007)

    Article  Google Scholar 

  25. Gurina, D., Surov, O., Voronova, M., Zakharov, A.: Molecular dynamics simulation of polyacrylamide adsorption on cellulose nanocrystals. Nanomaterials 10(7), 1256 (2020)

    Article  Google Scholar 

  26. Udayanandan, R., Silva, P., & Gunasekera, T. (2019). Compression fatigue and stress relaxation properties of single network polyacrylamide hydrogels. In Moratuwa Engineering Research Conference (MERCon). IEEE (pp. 533–537). https://doi.org/10.1109/MERCon.2019.8818924

  27. Gong, J.: Materials both tough and soft. Science 344(6180), 161–162 (2014)

    Article  Google Scholar 

  28. Ducrot, E., et al.: Materials both tough and soft. Science 344(6180), 186–187 (2014)

    Article  Google Scholar 

  29. Tang, Q., Sun, X., Li, Q.: A simple route to interpenetrating network hydrogel with high mechanical strength. J Colloid Interface Sci 339, 45–52 (2009). https://doi.org/10.1016/j.jcis.2009.07.026

    Article  Google Scholar 

  30. Faturechi, R., Karimi, A., Hashemi, A., Yousefi, H., Navidbakhsh, M.: Influence of Poly(acrylic acid) on the mechanical properties of composite hydrogels. Adv. Polym. Technol. 34, 21487 (2015). https://doi.org/10.1002/adv.21487

  31. Slaughter, B.V., Blanchard, A.T., Maass, K.F., Peppas, N.A.: Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH. J. Appl. Polym. Sci. 132, 42076 (2015). https://doi.org/10.1002/app.42076

  32. Simeonov, M., Kostova, B., Vassileva, E.: Interpenetrating polymer networks of poly(acrylic acid) and polyacrylamide for sustained verapamil hydrochloride release. Macromol Symp 358, 225–231 (2015). https://doi.org/10.1002/masy.201500014

    Article  Google Scholar 

  33. Simeonov, M., Apostolov, A., Vassileva, E.: In situ calcium phosphate deposition in hydrogels of poly(acrylic acid)–polyacrylamide interpenetrating polymer networks. RSC Adv. 6(20), 16274–16284 (2016). https://doi.org/10.1039/c5ra26066c

    Article  Google Scholar 

  34. Alvarado, A.G., Cortés, J., Pérez-Carrillo, L.A.: Temperature and pH-responsive polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. J Macromol Sci Part B 55, 1086–1098 (2016). https://doi.org/10.1080/00222348.2016.1238436

    Article  Google Scholar 

  35. Boudraa, K., Bouchaour, T., Maschke, U.: Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments. J Therm Anal Calorim (2019). https://doi.org/10.1007/s10973-019-08898-y

    Article  Google Scholar 

  36. The Chemistry Unified Language Interface (CULGI), version 13.0, CULGI B.V., the Netherlands (2004–2019)

  37. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  38. Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J Phys Chem 94, 8897–8909 (1990). https://doi.org/10.1021/j100389a010

    Article  Google Scholar 

  39. Fraaije, J. H. G., et al. Culgi manual 13.0.1, Culgi, Leiden, Netherlands

  40. Rukmani, S.J., Kupgan, G., Anstine, D.M.: A molecular dynamics study of water-soluble polymers: analysis of force fields from atomistic simulations. Colina CM 45, 310–321 (2019). https://doi.org/10.1080/08927022.2018.1531401

    Article  Google Scholar 

  41. Anstine, D.M., Strachan, A.: Effects of an atomistic modelling approach on predicted mechanical properties of glassy polymers via molecular dynamics. Colina CM 28, 025006 (2020). https://doi.org/10.1088/1361-651X/ab615c

    Article  Google Scholar 

  42. Demir, B., Walsh, T.: A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 12(8), 2453–2464 (2016). https://doi.org/10.1039/c5sm02788h

    Article  Google Scholar 

  43. An, M., Demir, B., Wan, X., Meng, H., Yang, N., Walsh, T.: Predictions of thermo-mechanical properties of cross-linked polyacrylamide hydrogels using molecular simulations. Advanced Theory And Simulations 2(3), 1800153 (2019). https://doi.org/10.1002/adts.201800153

    Article  Google Scholar 

  44. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F.: Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  Google Scholar 

  45. Hossain, D., Tschopp, M.A., Ward, D.K.: Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer (Guildf) 51, 6071–6083 (2010). https://doi.org/10.1016/j.polymer.2010.10.009

    Article  Google Scholar 

  46. Tschopp, M., Bouvard, J., Ward, D., Bammann, D., & Horstemeyer, M. (2013). Influence of ensemble boundary conditions (thermostat and barostat) on the deformation of amorphous polyethylene by molecular dynamics.

  47. Sperling, L. H. (2004). Interpenetrating polymer networks. In: Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc.

  48. Sánchez, M.S., Ferrer, G.G., Cabanilles, C.T.: Forced compatibility in poly(methyl acrylate)/poly(methyl methacrylate) sequential interpenetrating polymer networks. Polymer (Guildf) 42, 10071–10075 (2001). https://doi.org/10.1016/S0032-3861

    Article  Google Scholar 

  49. Jm, M. D., Dt, E., & G, G. F. (2001). Miscibility of poly(butyl acrylate)−poly(butyl methacrylate) sequential interpenetrating polymer networks. Macromolecules, 34, 5525-5534. https://doi.org/10.1021/ma002046i

  50. Chapter 6: Swimming Microorganisms (2018). In: Yamaguchi T, Ishikawa T, Imai Y (eds) Integrated Nano-Biomechanics. Elsevier, Boston, pp 175–216. doi:https://doi.org/10.1016/B978-0-323-38944-0.00006-1

  51. Haggerty, L., Sugarman, J., Prudhomme, R.: Diffusion of polymers through polyacrylamide gels. Polymer (Guildf) 29, 1058–1063 (1988). https://doi.org/10.1016/0032-3861

    Article  Google Scholar 

  52. Gonzalez. (2012). Study of the diffusion kinetics in hydrogels synthesized from acrylamide-co-acrylic acid with pet and starch by conventional heating and radiation microwaves. Rev. LatinAm, Metal. Mat.; 32.

  53. Gestoso, P., Brisson, J.: Towards the simulation of poly(vinyl phenol)/poly(vinyl methyl ether) blends by atomistic molecular modelling. Polymer (Guildf) 44, 2321–2329 (2003). https://doi.org/10.1016/S0032-3861

    Article  Google Scholar 

  54. Yaseen, S., Mansoori, G.A.: Molecular dynamics studies of interaction between asphaltenes and solvents. J Pet Sci Eng 156, 118–124 (2017). https://doi.org/10.1016/j.petrol.2017.05.018

    Article  Google Scholar 

  55. Han, J., Gee, R.H., Boyd, R.H.: Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27, 7781–7784 (1994). https://doi.org/10.1021/ma00104a036

    Article  Google Scholar 

  56. Yu, K., Li, Z., Sun, J.: Polymer structures and glass transition: a molecular dynamics simulation study. Macromol Theory Simulations 10, 624–633 (2001)

    Article  Google Scholar 

  57. Metatla, N., Soldera, A.: Computation of densities, bulk moduli and glass transition temperatures of vinylic polymers from atomistic simulation. Mol Simul 32, 1187–1193 (2006). https://doi.org/10.1080/08927020601059901

    Article  Google Scholar 

  58. Soldera, A., Metatla, N.: Glass transition of polymers: Atomistic simulation versus experiments. Phys Rev E 74, 061803 (2006). https://doi.org/10.1103/PhysRevE.74.061803

    Article  Google Scholar 

  59. York, D.: Unified equations for the slope, intercept, and standard error of the best straight line. Am. J. Phys. 72(3), 367–375 (2004)

    Article  Google Scholar 

  60. Neamtu, I., Chiriac, A. P., & Nita, L. E. (2006). Characterization of poly (acrylamide) as temperature-sensitive hydrogel. J Optoelectron Adv Mater.

  61. Permyakova, N., Zheltonozhskaya, T., Revko, O., Grischenko, L.: Self-assembly and metalation of pH-sensitive double hydrophilic block copolymers with interacting polymer components. Macromol Symp 317(318), 63–74 (2012). https://doi.org/10.1002/masy.201100079

    Article  Google Scholar 

  62. Keshavarz, M.H.: A new approach for assessment of glass transition temperature of acrylic and methacrylic polymers from structure of their monomers without using any computer codes. J Therm Anal Calorim 126, 1787–1796 (2016). https://doi.org/10.1007/s10973-016-5701-6

    Article  Google Scholar 

  63. Kunitskaya, L., Zheltonozhskaya, T., Destarac, M., Mazieres, S.: Block copolymers containing polyacrylamide and polyacrylic acid: Bulk structure and hydrogen bonds system. Mol Cryst Liq Cryst 642, 89–98 (2017). https://doi.org/10.1080/15421406.2016.1255522

    Article  Google Scholar 

  64. Eisenberg, A., Yokoyama, T., & Sambalido, E. (1969). Dehydration kinetics and glass transition of poly(acrylic acid). J Polym Sci Part A-1 Polym Chem 7, 1717(1728). https://doi.org/10.1002/pol.1969.150070714

  65. Pásztor, S., Iván, B., Kali, G.: Extreme difference of polarities in a single material: Poly(acrylic acid)-based amphiphilic conetworks with polyisobutylene cross-linker. J Polym Sci Part A Polym Chem 55, 1818–1821 (2017). https://doi.org/10.1002/pola.28569

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the CULGI® for their continued support.

This work was granted access to the HPC resources of UCI-UABT “Unité de Calcul Intensif” of the University Aboubekr Belkaïd of Tlemcen financed by the DGRSDT “Direction Générale de la Recherche Scientifique et du Développement Technologique.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Boudraa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 249 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudraa, K., Bouchaour, T. Investigating physical behavior of polyacrylamide/polyacrylic acid interpenetrating polymer networks through atomistic molecular dynamics simulations. Mech Soft Mater 3, 8 (2021). https://doi.org/10.1007/s42558-021-00038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-021-00038-7

Keywords

Navigation