Skip to main content
Log in

The two Poisson’s ratios in annulus fibrosus: relation with the osmo-inelastic features

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

The annulus fibrosus of the intervertebral disc is a highly complex layered structure in which the inelastic features of the tangled extracellular matrix interact with the surrounding physiological fluid by osmotic effect. In this in vitro study, the time-dependent transversal behavior in the two planes (fibers and lamellae planes) of multi-lamellae annulus tissues is reported by means of an accurate optical strain measuring technique based upon digital image correlation. Fresh annulus specimens of square cross section, extracted from bovine cervical discs, are tested under quasi-static (cyclic uniaxial stretching) and relaxation (interrupted stretching) loading with variation in osmolarity and strain rate conditions. Significant osmotic and strain rate effects are found on the elastic stiffness and the apparent Poisson’s ratios (p < 0.05, ANOVA). Under quasi-static loading, the apparent Poisson’s ratio is found higher than 0.5 in fibers plane and negative (i.e., auxetic) in lamellae plane. This material property evolves progressively towards classical bounds with relaxation time, i.e., between 0 and 0.5. The strong dependence of the auxetic behavior on time and chemical environment provides valuable insights about internal fluid exchanges. An interpretation of the osmo-inelastic mechanisms is proposed in which mechanical-based and chemical-based fluid flow interact until chemo-mechanical equilibrium. The new information allows a better understanding of the disc functionality and must be considered in accurate modeling of the disc annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The interaction between inelastic effects and osmolarity effects will be termed as osmo-inelastic coupling.

References

  1. Drost, M.R., Willems, P., Snijders, H., Huyghe, J.M., Janssen, J.D., Huson, A.: Confined compression of canine annulus fibrosus under chemical and mechanical loading. J. Biomech. Eng. 117, 390–396 (1995)

    Article  Google Scholar 

  2. Schmidt, H., Reitmaier, S., Graichen, F., Shirazi-Adl, A.: Review of the fluid flow within intervertebral discs - how could in vitro measurements replicate in vivo? J. Biomech. 49, 3133–3146 (2016)

    Article  Google Scholar 

  3. Race, A., Broom, N.D., Robertson, P.: Effect of loading rate and hydration on the mechanical properties of the disc. Spine. 25, 662–669 (2000)

    Article  Google Scholar 

  4. Holzapfel, G.A., Schulze-Bauer, C.A.J., Feigl, G., Regitnig, P.: Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3, 125–140 (2005)

    Article  Google Scholar 

  5. Kemper, A.R., McNally, C., Duma, S.M.: The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed. Sci. Instrum. 43, 176–181 (2007)

    Google Scholar 

  6. Newell, N., Grigoriadis, G., Christou, A., Carpanen, D., Masouros, S.D.: Material properties of bovine intervertebral discs across strain rates. J. Mech. Behav. Biomed. Mater. 65, 824–830 (2016)

    Article  Google Scholar 

  7. Newell, N., Little, J.P., Christou, A., Adams, M.A., Adam, C.J., Masouros, S.D.: Biomechanics of the human intervertebral disc: a review of testing techniques and results. J. Mech. Behav. Biomed. Mater. 69, 420–434 (2017)

    Article  Google Scholar 

  8. Tavakoli, J., Costi, J.J.: New findings confirm the viscoelastic behaviour of the inter-lamellar matrix of the disc annulus fibrosus in radial and circumferential directions of loading. Acta Biomater. 71, 411–419 (2018)

    Article  Google Scholar 

  9. Derrouiche, A., Zaouali, A., Zaïri, F., Ismail, J., Chaabane, M., Qu, Z., Zaïri, F.: Osmo-inelastic response of the intervertebral disc. Proceedings of the Institution of Mechanical Engineers. Part H. J. Eng. Med. 233, 332–341 (2019)

    Article  Google Scholar 

  10. Derrouiche, A., Zaïri, F., Zaïri, F.: A chemo-mechanical model for osmo-inelastic effects in the annulus fibrosus. Biomech. Model. Mechanobiol. 18, 1773–1790 (2019)

    Article  Google Scholar 

  11. Kandil, K., Zaïri, F., Derrouiche, A., Messager, T., Zaïri, F.: Interlamellar-induced time-dependent response of intervertebral disc annulus: a microstructure-based chemo-viscoelastic model. Acta Biomater. 100, 75–91 (2019)

  12. Emanuel, K.S., van der Veen, A.J., Rustenburg, C.M.E., Smit, T.H., Kingma, I.: Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: a caprine in vitro study. J. Biomech. 70, 10–15 (2018)

    Article  Google Scholar 

  13. Vergroesen, P.P.A., Emanuel, K.S., Peeters, M., Kingma, I.: Are axial intervertebral disc biomechanics determined by osmosis? J. Biomech. 70, 4–9 (2018)

    Article  Google Scholar 

  14. Ebara, S., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M.: Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine. 21, 452–461 (1996)

    Article  Google Scholar 

  15. Pezowicz, C.A., Robertson, P.A., Broom, N.D.: The structural basis of interlamellar cohesion in the intervertebral disc wall. J. Anat. 208, 317–330 (2006)

    Article  Google Scholar 

  16. Michalek, A.J., Buckley, M.R., Bonassar, L.J., Cohen, I., Iatridis, J.C.: Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J. Biomech. 42, 2279–2285 (2009)

    Article  Google Scholar 

  17. Adam, C., Rouch, P., Skalli, W.: Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc. J. Biomech. 48, 4303–4308 (2015)

    Article  Google Scholar 

  18. Mengoni, M., Luxmoore, B.J., Wijayathunga, V.N., Jones, A.C., Broom, N.D., Wilcox, R.K.: Derivation of inter-lamellar behaviour of the intervertebral disc annulus. J. Mech. Behav. Biomed. Mater. 48, 164–172 (2015)

    Article  Google Scholar 

  19. Vergari, C., Mansfield, J., Meakin, J.R., Winlove, P.C.: Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc. Acta Biomater. 37, 14–20 (2016)

    Article  Google Scholar 

  20. Tavakoli, J., Elliott, D.M., Costi, J.J.: Structure and mechanical function of the inter-lamellar matrix of the annulus fibrosus in the disc. J. Orthop. Res. 34, 1307–1315 (2016)

    Article  Google Scholar 

  21. Tavakoli, J., Elliott, D.M., Costi, J.J.: The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc. Acta Biomater. 58, 269–277 (2017)

    Article  Google Scholar 

  22. Nachemson, A., Morris, J.M.: In vivo measurements of intradiscal pressure: discometry, a method for the determination of pressure in the lower lumbar discs. J. Bone Joint Surg. 46, 1077–1092 (1964)

    Article  Google Scholar 

  23. Baldit, A., Ambard, D., Cherblanc, F., Royer, P.: Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue. Biomech. Model. Mechanobiol. 13, 643–652 (2014)

    Article  Google Scholar 

  24. Elliott, D.M., Setton, L.A.: Anisotropic and inhomogeneous tensile behavior of the human annulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123, 256–263 (2001)

    Article  Google Scholar 

  25. Guerin, H.A.L., Elliott, D.M.: Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J. Biomech. 39, 1410–1418 (2006)

    Article  Google Scholar 

  26. Lewis, N.T., Hussain, M.A., Mao, J.J.: Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy. Micron. 39, 1008–1019 (2008)

    Article  Google Scholar 

  27. O’Connell, G.D., Guerin, H.L., Elliott, D.M.: Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 1–7 (2009)

    Article  Google Scholar 

  28. O’Connell, G.D., Sen, S., Elliott, D.M.: Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech. Model. Mechanobiol. 11, 493–503 (2012)

    Article  Google Scholar 

  29. Singha, K., Singha, M.: Biomechanism profile of intervertebral disc’s (IVD): strategies to successful tissue engineering for spinal healing by reinforced composite structure. J. Tissue Sci. Eng. 3, 1000118 (2012)

  30. Veronda, D.R., Westmann, R.A.: Mechanical characterization of skin-finite deformations. J. Biomech. 3, 111–124 (1970)

    Article  Google Scholar 

  31. Lees, C., Vincent, J.F., Hillerton, J.E.: Poisson’s ratio in skin. Biomed. Mater. Eng. 1, 19–23 (1991)

    Google Scholar 

  32. Williams, J.L., Lewis, J.L.: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J. Biomech. Eng. 104, 50–56 (1982)

    Article  Google Scholar 

  33. Timmins, L.H., Wu, Q., Yeh, A.T., Moore, J.E., Greenwald, S.E.: Structural inhomogeneity and fiber orientation in the inner arterial media. Am. J. Physiol. Heart Circ. Physiol. 298, 1537–1545 (2010)

    Article  Google Scholar 

  34. Gatt, R., Wood, M.V., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K.M., Casha, A., Agius, T.P., Schembri-Wismayer, P., Attard, L., Chockalingam, N., Grima, J.N.: Negative Poisson’s ratios in tendons: an unexpected mechanical response. Acta Biomater. 24, 201–208 (2015)

    Article  Google Scholar 

  35. Costi, J.J., Hearn, T.C., Fazzalari, N.L.: The effect of hydration on the stiffness of intervertebral discs in an ovine model. Clin. Biomech. 17, 446–455 (2002)

    Article  Google Scholar 

  36. Bruehlmann, S.B., Hulme, P.A., Duncan, N.A.: In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. J. Biomech. 37, 223–231 (2004)

    Article  Google Scholar 

  37. Zhou, P., Goodson, K.E.: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation. Opt. Eng. 40, 1613–1620 (2001)

    Article  Google Scholar 

  38. Palanca, M., Tozzi, G., Cristofolini, L.: The use of digital image correlation in the biomechanical area: a review. International Biomechanics. 3, 1–21 (2015)

    Article  Google Scholar 

  39. Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124, 78–84 (2002)

    Article  Google Scholar 

  40. Maroudas, A.: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature. 260, 808–809 (1976)

    Article  Google Scholar 

  41. Jiang, Q., Zaïri, F., Frederix, C., Yan, Z., Derrouiche, A., Qu, Z., Liu, X., Zaïri, F.: Biomechanical response of a novel intervertebral disc prosthesis using functionally graded polymers: a finite element study. J. Mech. Behav. Biomed. Mater. 94, 288–297 (2019)

    Article  Google Scholar 

  42. Jiang, Q., Zaïri, F., Frederix, C., Derrouiche, A., Yan, Z., Qu, Z., Liu, X., Zaïri, F.: Crystallinity dependency of the time-dependent mechanical response of polyethylene: application in total disc replacement. J. Mater. Sci. Mater. Med. 30, 46 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi Zaïri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrouiche, A., Karoui, A., Zaïri, F. et al. The two Poisson’s ratios in annulus fibrosus: relation with the osmo-inelastic features. Mech Soft Mater 2, 1 (2020). https://doi.org/10.1007/s42558-019-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0016-y

Keywords

Navigation