Skip to main content

A Derivation of the Sharp Moser–Trudinger–Onofri Inequalities from the Fractional Sobolev Inequalities

Abstract

We derive the sharp Moser–Trudinger–Onofri inequalities on the standard n-sphere and CR \((2n+1)\)-sphere as the limit of the sharp fractional Sobolev inequalities for all \(n\ge 1\). On the 2-sphere and 4-sphere, this was established recently by Chang and Wang. Our proof uses an alternative and elementary argument.

This is a preview of subscription content, access via your institution.

References

  1. Aubin, T.: Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal. 32(2), 148–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branson, T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans. Am. Math. Soc. 347(10), 3671–3742 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branson, T.P., Chang, S.-Y.A., Yang, P.C.: Estimates and extremals for zeta function determinants on four-manifolds. Commun. Math. Phys. 149(2), 241–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Branson, T.P., Fontana, L., Morpurgo, C.: Moser–Trudinger and Beckner–Onofri’s inequalities on the CR sphere. Ann. Math. (2) 177(1), 1–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlen, E., Loss, M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(\mathbb{S}^{n}\). Geom. Funct. Anal. 2(1), 90–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Case, J.S., Chang, S.-Y.A.: On fractional GJMS operators. Commun. Pure Appl. Math. 69(6), 1017–1061 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, S.-Y.A., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, S.-Y.A., Wang, F.: Limit of fractional power Sobolev inequalities. J. Funct. Anal. 274(4), 1177–1201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, S.-Y.A., Yang, P.: Prescribing Gaussian curvature on \(\mathbb{S}^{2}\). Acta Math. 159(3–4), 215–259 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, W.-Y., Tian, G.: The generalized Moser–Trudinger inequality, In: Chang, K.-C., et al. (eds.) Nonlinear Analysis and Microlocal Analysis: Proceedings of the International Conference at Nankai Institute of Mathematics. World Scientific, ISBN 9810209134, pp. 57–70 (1992)

  13. Dolbeault, J., Esteban, M.J., Jankowiak, G.: The Moser–Trudinger–Onofri inequality. Chin. Ann. Math. Ser. B 36(5), 777–802 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, R., Lieb, E.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. (2) 176(1), 349–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gui, C., Moradifam, A.: The sphere covering inequality and its applications. Invent. Math. 214(3), 1169–1204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25(2), 167–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321–326 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rubinstein, Y.A.: On energy functionals, Kähler–Einstein metrics, and the Moser–Trudinger–Onofri neighborhood. J. Funct. Anal. 255(9), 2641–2660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor G. Tian for his kind advice on presentation and for his insightful comments. He also thanks Professor R. Frank for clarifying the limiting process in the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingang Xiong.

Additional information

This work was supported in part by NSFC 11501034, NSFC 11571019 and the key project NSFC 11631002.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J. A Derivation of the Sharp Moser–Trudinger–Onofri Inequalities from the Fractional Sobolev Inequalities. Peking Math J 1, 221–229 (2018). https://doi.org/10.1007/s42543-019-00012-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-019-00012-3

Keywords