Abstract
This is the first of three papers in which we prove that steady, incompressible Navier–Stokes flows posed over the moving boundary, \(y = 0\), can be decomposed into Euler and Prandtl flows in the inviscid limit globally in \([1, \infty ) \times [0,\infty )\), assuming a sufficiently small velocity mismatch. In this part, sharp decay rates and self-similar asymptotics are extracted for both Prandtl and Eulerian layers.
This is a preview of subscription content, access via your institution.
Notes
It is clear that by rescaling \(z \rightarrow (1-\delta )^{\frac{1}{2}}z\), we can replace the factor of \(1-\delta\) in front of \(\psi ''\) by simply 1. This rescaling would change the main linear operator, \((1-\delta ) \psi '' + \frac{z}{2} \psi '\) to \(\psi '' + \frac{z}{2} \psi '\). For notational ease, then, we work simply with the \(\psi ''\) instead of \((1-\delta )\psi ''\). The actual self-similar variable, then, is really \((1-\delta )\frac{\eta }{\sqrt{x}}\), but as \((1-\delta )\) is near 1, this causes no confusion in the analysis to follow.
References
Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Elsevier, Kidlington (2003)
Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)
Asano, A.: Zero viscosity limit of incompressible Navier–Stokes equations. In: Conference at the Fourth Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto (1991)
Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)
Bricmont, J., Kupiainen, A., Lin, G.: Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun. Pure. Appl. Math. 47, 893–922 (1994)
Dalibard, A.L., Masmoudi, N.: Phénomène de séparation pour l’équation de Prandtl stationnaire. Séminaire Laurent Schwartz—EDP et applications, pp. 1–18 (2014–2015)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
Ding, Z.: A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124(2), 591–600 (1996)
E, Weinan: Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)
E, Weinan, Engquist, B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)
Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer Monographs in Mathematics, Second edn. Springer, Berlin (2011)
Gerard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)
Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)
Gerard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)
Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier–Stokes flows. arXiv:1607.06434v1 (2016)
Gie, G.-M., Jung, C.-Y., Temam, R.: Recent progresses in the boundary layer theory. Discrete Contin. Dyn. Syst. A 36(5), 2521–2583 (2016)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics. SIAM, Philadelphia (2011)
Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)
Guo, Y., Nguyen, T.: A note on the Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)
Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. Ann. PDE 3, 10 (2017)
Hong, L., Hunter, J.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1(2), 293–316 (2003)
Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)
Iyer, S.: Steady Prandtl boundary layer expansion of Navier–Stokes flows over a rotating disk. Arch. Ration. Mech. Anal. 224(2), 421–469 (2017)
Iyer, S.: Global steady Prandtl expansion over a moving boundary II. Peking Math. J. (to appear)
Iyer, S.: Global steady Prandtl expansion over a moving boundary III. Peking Math. J. (to appear)
Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), pp. 85–98. Math. Sci. Res. Inst. Publ., vol. 2. Springer, New York (1984)
Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)
Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)
Kukavica, I., Vicol, V., Wang, F.: The van Dommelen and Shen singularity in the Prandtl equations. Adv. Math. 307, 288–311 (2017)
Kundu, P., Cohen, I.: Fluid Mechanics, Third edn. Elsevier, Amsterdam (2004)
Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003)
Maekawa, Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128 (2014)
Masmoudi, N., Wong, T.K.: Local in time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68, 1683–1741 (2015)
Mazzucato, A., Taylor, M.: Vanishing viscocity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)
Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)
Oleinik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967)
Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)
Orlt, M.: Regularity for Navier–Stokes in domains with corners, Ph.D. Thesis (1998) (in German)
Orlt, M., Sändig, A.M.: Regularity of viscous Navier–Stokes flows in nonsmooth domains. Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 167. Dekker, New York (1995)
Prandtl, L.: Über flüssigkeitsbewegung bei sehr kleiner reibung. In: Verhandlungen des III Internationalen Mathematiker-Kongresses, Heidelberg. Teubner, Leipzig, pp. 484–491 [English Translation: Motion of fluids with very little viscosity. Technical Memorandum No. 452 by National Advisory Committee for Aeuronautics (1904)]
Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)
Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)
Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)
Serrin, J.: Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory. Proc. R. Soc. Lond. A 299, 491–507 (1967)
Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, 2nd edn. Princeton University Press, Princeton (1993)
Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004)
Acknowledgements
The author thanks Yan Guo for many valuable discussions regarding this research. The author also thanks Bjorn Sandstede for introducing him to the paper [5].
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was completed under partial support by NSF Grant 1209437.
Rights and permissions
About this article
Cite this article
Iyer, S. Global Steady Prandtl Expansion over a Moving Boundary I. Peking Math J 2, 155–238 (2019). https://doi.org/10.1007/s42543-019-00011-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42543-019-00011-4