Skip to main content

Effect of tree species and seasons on soil nitrogen transformation rates in the semi-arid forest of Delhi, India

Abstract

Soil nitrogen mineralization (N min) is a very crucial component of N cycling. By far, studies have primarily shown the effect of seasons on N min. However, information on the effect of trees is primarily missing in the semi-arid forest of Delhi. We ascertained the effect of tree species and seasons on nitrogen mineralization, nitrification, and ammonification for 1 year (Dec. 2014 to Nov. 2015) by using an intact soil core (in-situ) incubation technique in 0–10 cm beneath the canopy of selected tree species. The study was carried out in a protected region in the South-Central ridge of Delhi. Our results demonstrate the effect of tree species on N-transformation rates. A noticeable seasonal variation was observed in all the processes, which were higher in monsoon and lower in winter. The rate of N min was highest under the canopy of Ficus religiosa (66.4 µg g−1 year−1) and lowest under Azadirachta indica (24.90 µg g−1 year−1). The rate of nitrification was highest under Ficus religiosa (39.90 µg g−1 year−1) and lowest under Cassia fistula (12.70 µg g−1 year−1). Similarly, the rate of ammonification was maximum under Ficus religiosa (26.6 µg g−1 year−1) and minimum under Azadirachta indica (10.7 µg g−1 year−1). Rates of N-transformation were positively correlated with soil moisture and temperature under few tree species indicating that soil properties control these processes. The higher rates of N-transformation under native tree species than the non-native ones suggest their effect on these vital ecosystem processes and regulating ecosystem function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Source: Agromet Observatory, Division of Agricultural Physics, IARI, New-Delhi)

Fig. 3

References

  1. Allen SE, Grimshaw HM, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. BlackwellScientific Publications, Hoboken

    Google Scholar 

  2. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SA (2004) Water pulses and biogeochemical cycles in arid and semi-arid ecosystems. Oecologia 141:221–235. https://doi.org/10.1007/s00442-004-1519-1

    Article  PubMed  Google Scholar 

  3. Bengtsson G, Bengtson P, Mansson KF (2003) Gross nitrogen mineralization, immobilization and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35:143–154. https://doi.org/10.1016/S0038-0717(02)00248-1

    CAS  Article  Google Scholar 

  4. Bernhard-Reversat F (1988) Soil nitrogen mineralization under a eucalyptus plantation and a natural Acacia forest in senegal. For Ecol Manag 23:233–244

    Article  Google Scholar 

  5. Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172

    Article  Google Scholar 

  6. Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave Desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784. https://doi.org/10.1016/S0038-0717(02)00166-9

    CAS  Article  Google Scholar 

  7. Champion HG, Seth SK (1968) A revised survey of the forest types of India. Manager of Publications, Delhi

    Google Scholar 

  8. Dinakaran J, Vikram K, Hanief M, Bidalia A, Tambat S, Rao KS (2019) Changes in vegetation cover and soil intrinsic properties influence the soil bacterial community composition and diversity across different climatic regions of India. Vegetos 32:288–302. https://doi.org/10.1007/s42535-019-00027-2

    Article  Google Scholar 

  9. Fu-sheng C, De-hui Z, Anand NS et al (2005) Effect of soil moisture and soil depth on nitrogen mineralization processes under Mongolian pine plantations in Zhanggutai sandy land, P.R. China. J for Res 16:101–104. https://doi.org/10.1007/BF02857899

    Article  Google Scholar 

  10. Gao W, Huang S, Huan Y, Yue X, Ye G (2019) Effect of tree species on soil carbon and nitrogen stocks in a coastal sand dune of southern subtropical China. Vegetos 32:142–150. https://doi.org/10.1007/s42535-019-00017-4

    Article  Google Scholar 

  11. Grenon F, Bradley RL, Titus BD (2004) Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol Biochem 36:1465–1474. https://doi.org/10.1016/j.soilbio.2004.04.021

    CAS  Article  Google Scholar 

  12. Grundmann GL, Renault P, Rosso L, Bardin R (1995) Differential effects of soil water content and temperature on nitrification and aeration. Soil Sci Soc Am J 59:1342–1349

    CAS  Article  Google Scholar 

  13. Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in n and c concentrations, soil acidity and p availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216. https://doi.org/10.1007/s11104-014-2047-3

    CAS  Article  Google Scholar 

  14. Li Z, Peng S, Rae DJ, Zhou G (2001) Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. Plant Soil 229:105–116

    CAS  Article  Google Scholar 

  15. Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    CAS  Article  Google Scholar 

  16. Ma F, Jia X, Zhou W, Zhou L, Yu D, Meng Y, Dai L (2017) Soil Nitrogen mineralization in a wind-distrubed area on Changbai Mountain after 30 years of vegetation restoration. Acta Ecol Sin 37:265–271. https://doi.org/10.1016/j.chnaes.2017.02.011

    Article  Google Scholar 

  17. Ma X, Zhao C, Tao H, Zhu J, Kundzewicz ZW (2018) Projections of actual evapotranspiration under the 1.5 °C and 2.0 °C global warming scenarios in sandy areas in northern China. Sci Total Environ 645:1496–1508. https://doi.org/10.1016/j.scitotenv.2018.07.253

    CAS  Article  PubMed  Google Scholar 

  18. Maheshwari JK (1963) The flora of Delhi, 1st edn. Council of Scientific and Educational Research, New Delhi

    Google Scholar 

  19. Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, De Neve S (2016) Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol 101:185–193. https://doi.org/10.1016/j.apsoil.2016.01.006

    Article  Google Scholar 

  20. Raison RJ, Connell MJ, Khanna PK (1987) Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19:521–530

    CAS  Article  Google Scholar 

  21. Rice SK, Westeran B, Fedrici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia psuedoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecol 174:97–107. https://doi.org/10.1023/B:VEGE.0000046049.21900.5a

    Article  Google Scholar 

  22. Schaeffer SM, Billings SA, Evans RD (2003) Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–553. https://doi.org/10.1007/s00442-002-1130-2

    CAS  Article  PubMed  Google Scholar 

  23. Singh RS, Raghubanshi AS, Singh JS (1991) Nitrogen mineralization in dry tropical Savanna: effects of burning and grazing. Soil Biol Biochem 23:269–273

    CAS  Article  Google Scholar 

  24. Theodose TA, Martin J (2003) Microclimate and substrate quality controls on nitrogen mineralization in a New England high salt marsh. Plant Ecol 167:213–221. https://doi.org/10.1023/A:1023974109113

    Article  Google Scholar 

  25. Tian J, Wei K, Condron LM, Chen Z, Xu Z, Feng J, Chen L (2017) Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland. Plant Soil 417:217–229. https://doi.org/10.1007/s11104-017-3253-6

    CAS  Article  Google Scholar 

  26. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  27. Wang C, Wang N, Zhu J, Liu Y, Xu X, Niu S, Yu G, Han X, He N (2017) Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Funct Ecol 32:83–94. https://doi.org/10.1111/1365-2435.13024

    Article  Google Scholar 

  28. Wang Q, Li F, Rong X, Fan Z (2018) Plant-Soil properties associated with nitrogen mineralization: effect of conversion of Natural Secondary Forests to Larch Plantations in a headwater catchment in Northeast China. Forests 9:386. https://doi.org/10.3390/f9070386

    Article  Google Scholar 

  29. Yu ZY, Peng SL (1995) The artificial and natural restoration of tropical and subtropical forests. Acta Ecol Sin 15:1–17

    CAS  Google Scholar 

  30. Zhang X, Wang Q, Gilliam FS, Bai W, Han X, Li L (2012) Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass Forage Sci 67:219–230

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Head, Department of Botany, University of Delhi, for providing the necessary facilities to conduct this study. We are also grateful to Late Air-Vice Marshal Vinod Rawat for cooperating and allowing to work within the forest. The authors are thankful to the laboratory staff of the Department of Botany, University of Delhi, forest authority, and their team for immense help and support throughout this research. The first author is thankful to UGC for providing a NON-NET fellowship for the entire duration of the study. The corresponding author thanks the University of Delhi for providing Research and Development Grant during 2014–15 and 2015–16 and the Institution of Eminence (IoE) for Faculty Research Programme (FRP) grant 2020-21.

Funding

Financial support received from the Research and Development Grant and Institution of Eminence (IoE) of the University of Delhi is highly acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shikha Prasad or Ratul Baishya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

The data that support the findings of this study are available from the corresponding author, RB, upon reasonable request.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Baishya, R. Effect of tree species and seasons on soil nitrogen transformation rates in the semi-arid forest of Delhi, India. Vegetos (2021). https://doi.org/10.1007/s42535-021-00291-1

Download citation

Keywords

  • Soil nitrogen mineralization
  • Semi-arid forest
  • Tree species
  • N- transformation rates
  • Seasonal variation