Skip to main content
Log in

Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Papaya is economically important cultivated fruit crop grown in all tropical countries, having enormous nutritional values. Papaya Ring Spot Virus imposes a significant crop loss in terms of quality and quantity. To encounter the virus vector (Aphis gossypii), indiscriminate use of chemical pesticides creates severe environmental hazards whereas biological control is a perfect alternative to this problem. The objectives of our present study were isolation and characterization of indigenous fungi and their comparative analysis of entomopathogenic fungi against papaya aphid and finding its pathogenicity. Fungal isolates collected from natural sources were characterized and identified by the cultural and morphological study. Potential EPF genera were molecularly identified by PCR (ITS1-5.8S-ITS2) method. Entomopathogenic fungi were screened against A. gossypii for their pathogenecity by incised leaf disc method. LD50 (median lethal dose) and LT50 (median lethal time) were analyzed by regression analysis. Phylogenetic relationship among EPF was evaluated by MEGA software. Out of forty isolated entomopathogenic fungi, three (Beauveria bassiana deb4, Penicillium verrucosum Nlg1, and Fusarium equiseti khr4) were highly effective entomopathogen. The LD50 value of B. bassiana, P. verrucosum and F. equiseti were 1.4 × 104, 9.8 × 104, 1.0 × 106 spores ml−1, and LT50 values were 32.14, 37.5, 32.14 h respectively. Their phylogenetic analysis indicates related closeness on the basis of their conserved internal transcribed spacer region. In conclusion, the indigenous isolated strain of B. bassiana (deb4) has shown highest biocontrol potentiality amongst three indigenous entomopatogenic fungi under lab condition against A. gossypii and can be applied in agrifields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Binggeli O, Neyen C, Poidevin M, Lemaitre B (2014) Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog 10:e1004067

    PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Raychaudhuri D (1978) New and little known aphids (Homoptera: Aphididae) from Kumaon Himalaya, India. Entomon 3(1):95–103

    Google Scholar 

  • Chutima R, Dell B, Vessabutr S, Bussaban B, Lumyong S (2011) Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 21:221–229

    PubMed  Google Scholar 

  • Dhingra OD, Sinclair JB (1985) Culture media and their formulas. Basic plant pathology methods. CRC, Boca Raton

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic, London

    Google Scholar 

  • Fang W, Pava-Ripoll M, Wang S, Leger RS (2009) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fung Genet Biol 46:277–285

    CAS  Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, St. Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    CAS  PubMed  Google Scholar 

  • Ganassi S, Moretti A, Stornelli C, Fratello B, Pagliai AB, Logrieco A, Sabatini MA (2001) Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathologia 151:131–138

    CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Garkoti A, Kumar V, Tripathi H (2014) Control of wilt disease of lentil through bio control agents and organic amendments in Tarai region of Uttarakhand, India. J Environ Biol 35:1067–1070

    PubMed  Google Scholar 

  • Ghosh SK, Chakraborty N, Biswas PP (2014) In vitro biological control of aphid of Papaya by Beauveria bassiana. III Int Symp Papaya 1022:113–117

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, Oxford

    Google Scholar 

  • Han JH, Jin BR, Kim JJ, Lee SY (2014a) Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Mycobiology 42:385–390

    PubMed  PubMed Central  Google Scholar 

  • Han Z, Wang Q, Fu J, Chen H, Zhao Y, Zhou B, Gong Z, Wei S, Li J, Liu H, Zhang X, Liu C, Yu H (2014b) Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris (2-butoxyethyl) phosphate. Aquat Toxicol 150:175–181

    CAS  PubMed  Google Scholar 

  • Humber RA (2005) Fungal identification USDA-ARS plant protection research 103 Unit US plant. Soil & Nutrition Laboratory, Ithaca

    Google Scholar 

  • Jayasimha G, Rachana R, Rajkumar V, Manjunatha M (2013) Evaluation of fungal pathogen, Fusarium semitectum Berk and Ravenel against okra aphid, Aphis gossypii Glover under laboratory and green house conditions. Pest Manag Hort Ecosyst 18:139–142

    Google Scholar 

  • Kalleshwaraswamy CM, Krishnakumar NK, Chandrashekara KN, Vani A (2012) Efficacy of insecticides and oils on feeding behaviour of Aphis gossypii Glover and transmission of Papaya ringspot virus (PRSV). K J A S 25(1):63–67

    Google Scholar 

  • Karthikeyan A, Selvanarayanan V (2011) In vitro efficacy of Beauveria bassiana (Bals.) Vuill. and Verticillium lecanii (Zimm.) viegas against selected insect pests of cotton. Recent Res Sci Technol 3(2):142–143

    Google Scholar 

  • Kim JJ, Jeong G, Han JH, Lee S (2013) Biological control of aphid using fungal culture and culture filtrates of Beauveria bassiana. Mycobiology 41:221–224

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  Google Scholar 

  • Lv C, Huang B, Qiao M, Wei J, Ding B (2011) Entomopathogenic fungi on Hemiberlesia pitysophila. PLoS One 6:e23649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinuz A, Schouten A, Menjivar R, Sikora R (2012) Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Bio Control 62:206–212

    Google Scholar 

  • Mishra DS, Kumar A, Prajapati CR, Singh A, Sharma S (2013) Identification of compatible bacterial and fungal isolate and their effectiveness against plant disease. J Environ Biol 34:183

    CAS  PubMed  Google Scholar 

  • Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP (2010) Cellulases of Penicillium verruculosum. Biotechnol J 5:871–880

    CAS  PubMed  Google Scholar 

  • Nagamani A, Kunwar IK, Manoharachary C (2006) Hand book of soil fungi. IK International Pvt. Ltd., New Delhi, p 477

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Ng JC, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    PubMed  Google Scholar 

  • Nicoletti R, De Stefano S (2000) Peptidi ciclici di origine fungina. IL Tabacco 8:33–59

    Google Scholar 

  • Ogawa K, Miura T (2014) Aphid polyphenisms: trans-generational developmental regulation through viviparity. Front Physiol 5:1

    PubMed  PubMed Central  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    PubMed  PubMed Central  Google Scholar 

  • Patil NS, Jadhav JP (2015) Significance of Penicillium ochrochloron chitinase as a biocontrol agent against pest Helicoverpa armigera. Chemosphere 128:231–235

    CAS  PubMed  Google Scholar 

  • Podder D, Ghosh SK (2019) A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci Rep 9:1108. https://doi.org/10.1038/s41598-018-37108-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada-Moraga E, Carrasco-Díaz JA, Santiago-Álvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shah HU, Iqbal Z (2017) Biological screening of crude extract of Penicillium sp. EU0013. J Anim Plant Sci 27(4):1209–1216

    Google Scholar 

  • Sharma P, Saini MK, Deep S, Kumar V (2012) Biological control of groundnut root rot in farmer’s field. J Agric Sci 4(8):48

    Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101:11030–11035

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tennant PF, Fermin GA, Roye ME (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis and molecular biology. Plant Viruses. 1:178–188

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genesfor phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  • Zimmermann G (1986) The ‘Galleria bait method for detection of entomopathogenic fungi in soil. J Appl Entomol 102:213–215

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Principal of Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, for providing the lab facility. The financial support was received from “Department of Science and Technology & Biotechnology (DSTBT)”, Government of West Bengal, India, as major research project (Sanction Number: 820 (Sanc.)/ST/P/S&T/1G-2/2014 dated 5/1/16); authors are also thankful to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Kumar Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Debnath, P., Ghosh, S.K. et al. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020). https://doi.org/10.1007/s42535-019-00072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-019-00072-x

Keywords

Navigation